Metamath Proof Explorer
Description: Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006) (Revised by Mario Carneiro, 3-Nov-2013)
|
|
Ref |
Expression |
|
Assertion |
iocval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,] 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-ioc |
⊢ (,] = ( 𝑦 ∈ ℝ* , 𝑧 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑦 < 𝑥 ∧ 𝑥 ≤ 𝑧 ) } ) |
2 |
1
|
ixxval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,] 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ) |