| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ioodvbdlimc1lem2.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							ioodvbdlimc1lem2.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							ioodvbdlimc1lem2.altb | 
							⊢ ( 𝜑  →  𝐴  <  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							ioodvbdlimc1lem2.f | 
							⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							ioodvbdlimc1lem2.dmdv | 
							⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ioodvbdlimc1lem2.dvbd | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑦 )  | 
						
						
							| 7 | 
							
								
							 | 
							ioodvbdlimc1lem2.y | 
							⊢ 𝑌  =  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  | 
						
						
							| 8 | 
							
								
							 | 
							ioodvbdlimc1lem2.m | 
							⊢ 𝑀  =  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  | 
						
						
							| 9 | 
							
								
							 | 
							ioodvbdlimc1lem2.s | 
							⊢ 𝑆  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ioodvbdlimc1lem2.r | 
							⊢ 𝑅  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐴  +  ( 1  /  𝑗 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ioodvbdlimc1lem2.n | 
							⊢ 𝑁  =  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 )  | 
						
						
							| 12 | 
							
								
							 | 
							ioodvbdlimc1lem2.ch | 
							⊢ ( 𝜒  ↔  ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  | 
						
						
							| 14 | 
							
								
							 | 
							zssre | 
							⊢ ℤ  ⊆  ℝ  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sstri | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℝ  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑀 )  ⊆  ℝ )  | 
						
						
							| 17 | 
							
								2 1
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ )  | 
						
						
							| 18 | 
							
								1 2
							 | 
							posdifd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  0  <  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 19 | 
							
								3 18
							 | 
							mpbid | 
							⊢ ( 𝜑  →  0  <  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							gt0ne0d | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≠  0 )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							rereccld | 
							⊢ ( 𝜑  →  ( 1  /  ( 𝐵  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 22 | 
							
								
							 | 
							0red | 
							⊢ ( 𝜑  →  0  ∈  ℝ )  | 
						
						
							| 23 | 
							
								17 19
							 | 
							recgt0d | 
							⊢ ( 𝜑  →  0  <  ( 1  /  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 24 | 
							
								22 21 23
							 | 
							ltled | 
							⊢ ( 𝜑  →  0  ≤  ( 1  /  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							flge0nn0 | 
							⊢ ( ( ( 1  /  ( 𝐵  −  𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( 1  /  ( 𝐵  −  𝐴 ) ) )  →  ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ∈  ℕ0 )  | 
						
						
							| 26 | 
							
								21 24 25
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ∈  ℕ0 )  | 
						
						
							| 27 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  ∈  ℕ0 )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  ∈  ℕ0 )  | 
						
						
							| 29 | 
							
								8 28
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							nn0zd | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 32 | 
							
								31
							 | 
							uzsup | 
							⊢ ( 𝑀  ∈  ℤ  →  sup ( ( ℤ≥ ‘ 𝑀 ) ,  ℝ* ,   <  )  =  +∞ )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							syl | 
							⊢ ( 𝜑  →  sup ( ( ℤ≥ ‘ 𝑀 ) ,  ℝ* ,   <  )  =  +∞ )  | 
						
						
							| 34 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 35 | 
							
								1
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 37 | 
							
								2
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 39 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 40 | 
							
								
							 | 
							eluzelre | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℝ )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑗  ∈  ℝ )  | 
						
						
							| 42 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  ∈  ℝ )  | 
						
						
							| 43 | 
							
								
							 | 
							0red | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  0  ∈  ℝ )  | 
						
						
							| 44 | 
							
								
							 | 
							1red | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  1  ∈  ℝ )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							readdcld | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0  +  1 )  ∈  ℝ )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 0  +  1 )  ∈  ℝ )  | 
						
						
							| 47 | 
							
								43
							 | 
							ltp1d | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  0  <  ( 0  +  1 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  <  ( 0  +  1 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 50 | 
							
								49
							 | 
							zred | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℝ )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  ∈  ℝ )  | 
						
						
							| 52 | 
							
								21
							 | 
							flcld | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ∈  ℤ )  | 
						
						
							| 53 | 
							
								52
							 | 
							zred | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 54 | 
							
								
							 | 
							1red | 
							⊢ ( 𝜑  →  1  ∈  ℝ )  | 
						
						
							| 55 | 
							
								26
							 | 
							nn0ge0d | 
							⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) ) )  | 
						
						
							| 56 | 
							
								22 53 54 55
							 | 
							leadd1dd | 
							⊢ ( 𝜑  →  ( 0  +  1 )  ≤  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  | 
						
						
							| 57 | 
							
								56 8
							 | 
							breqtrrdi | 
							⊢ ( 𝜑  →  ( 0  +  1 )  ≤  𝑀 )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 0  +  1 )  ≤  𝑀 )  | 
						
						
							| 59 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑗 )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  ≤  𝑗 )  | 
						
						
							| 61 | 
							
								46 51 41 58 60
							 | 
							letrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 0  +  1 )  ≤  𝑗 )  | 
						
						
							| 62 | 
							
								42 46 41 48 61
							 | 
							ltletrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  <  𝑗 )  | 
						
						
							| 63 | 
							
								62
							 | 
							gt0ne0d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑗  ≠  0 )  | 
						
						
							| 64 | 
							
								41 63
							 | 
							rereccld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  /  𝑗 )  ∈  ℝ )  | 
						
						
							| 65 | 
							
								39 64
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ℝ )  | 
						
						
							| 66 | 
							
								41 62
							 | 
							elrpd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑗  ∈  ℝ+ )  | 
						
						
							| 67 | 
							
								66
							 | 
							rpreccld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  /  𝑗 )  ∈  ℝ+ )  | 
						
						
							| 68 | 
							
								39 67
							 | 
							ltaddrpd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  <  ( 𝐴  +  ( 1  /  𝑗 ) ) )  | 
						
						
							| 69 | 
							
								29
							 | 
							nn0red | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 70 | 
							
								22 54
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( 0  +  1 )  ∈  ℝ )  | 
						
						
							| 71 | 
							
								53 54
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  ∈  ℝ )  | 
						
						
							| 72 | 
							
								22
							 | 
							ltp1d | 
							⊢ ( 𝜑  →  0  <  ( 0  +  1 ) )  | 
						
						
							| 73 | 
							
								22 70 71 72 56
							 | 
							ltletrd | 
							⊢ ( 𝜑  →  0  <  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  | 
						
						
							| 74 | 
							
								73 8
							 | 
							breqtrrdi | 
							⊢ ( 𝜑  →  0  <  𝑀 )  | 
						
						
							| 75 | 
							
								74
							 | 
							gt0ne0d | 
							⊢ ( 𝜑  →  𝑀  ≠  0 )  | 
						
						
							| 76 | 
							
								69 75
							 | 
							rereccld | 
							⊢ ( 𝜑  →  ( 1  /  𝑀 )  ∈  ℝ )  | 
						
						
							| 77 | 
							
								76
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  /  𝑀 )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								39 77
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑀 ) )  ∈  ℝ )  | 
						
						
							| 79 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 80 | 
							
								69 74
							 | 
							elrpd | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ+ )  | 
						
						
							| 81 | 
							
								80
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  ∈  ℝ+ )  | 
						
						
							| 82 | 
							
								
							 | 
							1red | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  1  ∈  ℝ )  | 
						
						
							| 83 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 84 | 
							
								83
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  ≤  1 )  | 
						
						
							| 85 | 
							
								81 66 82 84 60
							 | 
							lediv2ad | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  /  𝑗 )  ≤  ( 1  /  𝑀 ) )  | 
						
						
							| 86 | 
							
								64 77 39 85
							 | 
							leadd2dd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑗 ) )  ≤  ( 𝐴  +  ( 1  /  𝑀 ) ) )  | 
						
						
							| 87 | 
							
								8
							 | 
							eqcomi | 
							⊢ ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  =  𝑀  | 
						
						
							| 88 | 
							
								87
							 | 
							oveq2i | 
							⊢ ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  =  ( 1  /  𝑀 )  | 
						
						
							| 89 | 
							
								88 76
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  ∈  ℝ )  | 
						
						
							| 90 | 
							
								21 23
							 | 
							elrpd | 
							⊢ ( 𝜑  →  ( 1  /  ( 𝐵  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 91 | 
							
								71 73
							 | 
							elrpd | 
							⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  ∈  ℝ+ )  | 
						
						
							| 92 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 93 | 
							
								92
							 | 
							a1i | 
							⊢ ( 𝜑  →  1  ∈  ℝ+ )  | 
						
						
							| 94 | 
							
								
							 | 
							fllelt | 
							⊢ ( ( 1  /  ( 𝐵  −  𝐴 ) )  ∈  ℝ  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ≤  ( 1  /  ( 𝐵  −  𝐴 ) )  ∧  ( 1  /  ( 𝐵  −  𝐴 ) )  <  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) ) )  | 
						
						
							| 95 | 
							
								21 94
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  ≤  ( 1  /  ( 𝐵  −  𝐴 ) )  ∧  ( 1  /  ( 𝐵  −  𝐴 ) )  <  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 1  /  ( 𝐵  −  𝐴 ) )  <  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  | 
						
						
							| 97 | 
							
								90 91 93 96
							 | 
							ltdiv2dd | 
							⊢ ( 𝜑  →  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  <  ( 1  /  ( 1  /  ( 𝐵  −  𝐴 ) ) ) )  | 
						
						
							| 98 | 
							
								17
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 99 | 
							
								98 20
							 | 
							recrecd | 
							⊢ ( 𝜑  →  ( 1  /  ( 1  /  ( 𝐵  −  𝐴 ) ) )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  <  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 101 | 
							
								89 17 1 100
							 | 
							ltadd2dd | 
							⊢ ( 𝜑  →  ( 𝐴  +  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) ) )  <  ( 𝐴  +  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 102 | 
							
								8
							 | 
							oveq2i | 
							⊢ ( 1  /  𝑀 )  =  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							oveq2i | 
							⊢ ( 𝐴  +  ( 1  /  𝑀 ) )  =  ( 𝐴  +  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴  +  ( 1  /  𝑀 ) )  =  ( 𝐴  +  ( 1  /  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 ) ) ) )  | 
						
						
							| 105 | 
							
								1
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 106 | 
							
								2
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 107 | 
							
								105 106
							 | 
							pncan3d | 
							⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐵  −  𝐴 ) )  =  𝐵 )  | 
						
						
							| 108 | 
							
								107
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  𝐵  =  ( 𝐴  +  ( 𝐵  −  𝐴 ) ) )  | 
						
						
							| 109 | 
							
								101 104 108
							 | 
							3brtr4d | 
							⊢ ( 𝜑  →  ( 𝐴  +  ( 1  /  𝑀 ) )  <  𝐵 )  | 
						
						
							| 110 | 
							
								109
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑀 ) )  <  𝐵 )  | 
						
						
							| 111 | 
							
								65 78 79 86 110
							 | 
							lelttrd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑗 ) )  <  𝐵 )  | 
						
						
							| 112 | 
							
								36 38 65 68 111
							 | 
							eliood | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 113 | 
							
								34 112
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  ∈  ℝ )  | 
						
						
							| 114 | 
							
								113 9
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ )  | 
						
						
							| 115 | 
							
								1 2 3 4 5 6
							 | 
							dvbdfbdioo | 
							⊢ ( 𝜑  →  ∃ 𝑏  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  | 
						
						
							| 116 | 
							
								69
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  →  𝑀  ∈  ℝ )  | 
						
						
							| 117 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 118 | 
							
								9
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  ∈  ℝ )  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  | 
						
						
							| 119 | 
							
								117 113 118
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  =  ( abs ‘ ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  =  ( abs ‘ ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) ) )  | 
						
						
							| 122 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  | 
						
						
							| 123 | 
							
								112
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 124 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑥  =  ( 𝐴  +  ( 1  /  𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( abs ‘ ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							breq1d | 
							⊢ ( 𝑥  =  ( 𝐴  +  ( 1  /  𝑗 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏  ↔  ( abs ‘ ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  ≤  𝑏 ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏  ∧  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( abs ‘ ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  ≤  𝑏 )  | 
						
						
							| 127 | 
							
								122 123 126
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  ≤  𝑏 )  | 
						
						
							| 128 | 
							
								121 127
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 )  | 
						
						
							| 129 | 
							
								128
							 | 
							a1d | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑀  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑀  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) )  | 
						
						
							| 131 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑘  =  𝑀  →  ( 𝑘  ≤  𝑗  ↔  𝑀  ≤  𝑗 ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							imbi1d | 
							⊢ ( 𝑘  =  𝑀  →  ( ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 )  ↔  ( 𝑀  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							ralbidv | 
							⊢ ( 𝑘  =  𝑀  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 )  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑀  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							rspcev | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑀  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) )  | 
						
						
							| 135 | 
							
								116 130 134
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							reximdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑏  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  𝑏  →  ∃ 𝑏  ∈  ℝ ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) ) )  | 
						
						
							| 138 | 
							
								115 137
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑏  ∈  ℝ ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝑘  ≤  𝑗  →  ( abs ‘ ( 𝑆 ‘ 𝑗 ) )  ≤  𝑏 ) )  | 
						
						
							| 139 | 
							
								16 33 114 138
							 | 
							limsupre | 
							⊢ ( 𝜑  →  ( lim sup ‘ 𝑆 )  ∈  ℝ )  | 
						
						
							| 140 | 
							
								139
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( lim sup ‘ 𝑆 )  ∈  ℂ )  | 
						
						
							| 141 | 
							
								
							 | 
							eluzelre | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑗  ∈  ℝ )  | 
						
						
							| 142 | 
							
								141
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ∈  ℝ )  | 
						
						
							| 143 | 
							
								
							 | 
							0red | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  ∈  ℝ )  | 
						
						
							| 144 | 
							
								52
							 | 
							peano2zd | 
							⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 1  /  ( 𝐵  −  𝐴 ) ) )  +  1 )  ∈  ℤ )  | 
						
						
							| 145 | 
							
								8 144
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 146 | 
							
								145
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 147 | 
							
								146
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑀  ∈  ℝ )  | 
						
						
							| 148 | 
							
								147
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℝ )  | 
						
						
							| 149 | 
							
								74
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  <  𝑀 )  | 
						
						
							| 150 | 
							
								
							 | 
							ioomidp | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 151 | 
							
								1 2 3 150
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 152 | 
							
								
							 | 
							ne0i | 
							⊢ ( ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴 (,) 𝐵 )  ≠  ∅ )  | 
						
						
							| 153 | 
							
								151 152
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ≠  ∅ )  | 
						
						
							| 154 | 
							
								
							 | 
							ioossre | 
							⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ  | 
						
						
							| 155 | 
							
								154
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ )  | 
						
						
							| 156 | 
							
								
							 | 
							dvfre | 
							⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ )  | 
						
						
							| 157 | 
							
								4 155 156
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ )  | 
						
						
							| 158 | 
							
								5
							 | 
							feq2d | 
							⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ  ↔  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) )  | 
						
						
							| 159 | 
							
								157 158
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 160 | 
							
								159
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℝ )  | 
						
						
							| 161 | 
							
								160
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 162 | 
							
								161
							 | 
							abscld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ∈  ℝ )  | 
						
						
							| 163 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) )  | 
						
						
							| 164 | 
							
								
							 | 
							eqid | 
							⊢ sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  | 
						
						
							| 165 | 
							
								153 162 6 163 164
							 | 
							suprnmpt | 
							⊢ ( 𝜑  →  ( sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  ∈  ℝ  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							simpld | 
							⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  ∈  ℝ )  | 
						
						
							| 167 | 
							
								7 166
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝑌  ∈  ℝ )  | 
						
						
							| 168 | 
							
								167
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑌  ∈  ℝ )  | 
						
						
							| 169 | 
							
								
							 | 
							rpre | 
							⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ )  | 
						
						
							| 170 | 
							
								169
							 | 
							rehalfcld | 
							⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  2 )  ∈  ℝ )  | 
						
						
							| 171 | 
							
								170
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  /  2 )  ∈  ℝ )  | 
						
						
							| 172 | 
							
								169
							 | 
							recnd | 
							⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℂ )  | 
						
						
							| 173 | 
							
								172
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ )  | 
						
						
							| 174 | 
							
								
							 | 
							2cnd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  2  ∈  ℂ )  | 
						
						
							| 175 | 
							
								
							 | 
							rpne0 | 
							⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≠  0 )  | 
						
						
							| 176 | 
							
								175
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ≠  0 )  | 
						
						
							| 177 | 
							
								
							 | 
							2ne0 | 
							⊢ 2  ≠  0  | 
						
						
							| 178 | 
							
								177
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  2  ≠  0 )  | 
						
						
							| 179 | 
							
								173 174 176 178
							 | 
							divne0d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  /  2 )  ≠  0 )  | 
						
						
							| 180 | 
							
								168 171 179
							 | 
							redivcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ∈  ℝ )  | 
						
						
							| 181 | 
							
								180
							 | 
							flcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  ∈  ℤ )  | 
						
						
							| 182 | 
							
								181
							 | 
							peano2zd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ∈  ℤ )  | 
						
						
							| 183 | 
							
								182 146
							 | 
							ifcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 )  ∈  ℤ )  | 
						
						
							| 184 | 
							
								11 183
							 | 
							eqeltrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑁  ∈  ℤ )  | 
						
						
							| 185 | 
							
								184
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑁  ∈  ℝ )  | 
						
						
							| 186 | 
							
								185
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ℝ )  | 
						
						
							| 187 | 
							
								182
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ∈  ℝ )  | 
						
						
							| 188 | 
							
								
							 | 
							max1 | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 189 | 
							
								147 187 188
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 190 | 
							
								189 11
							 | 
							breqtrrdi | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑀  ≤  𝑁 )  | 
						
						
							| 191 | 
							
								190
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ≤  𝑁 )  | 
						
						
							| 192 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ≤  𝑗 )  | 
						
						
							| 193 | 
							
								192
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ≤  𝑗 )  | 
						
						
							| 194 | 
							
								148 186 142 191 193
							 | 
							letrd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ≤  𝑗 )  | 
						
						
							| 195 | 
							
								143 148 142 149 194
							 | 
							ltletrd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  <  𝑗 )  | 
						
						
							| 196 | 
							
								195
							 | 
							gt0ne0d | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑗  ≠  0 )  | 
						
						
							| 197 | 
							
								142 196
							 | 
							rereccld | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 1  /  𝑗 )  ∈  ℝ )  | 
						
						
							| 198 | 
							
								142 195
							 | 
							recgt0d | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  0  <  ( 1  /  𝑗 ) )  | 
						
						
							| 199 | 
							
								197 198
							 | 
							elrpd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 1  /  𝑗 )  ∈  ℝ+ )  | 
						
						
							| 200 | 
							
								199
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  →  ( 1  /  𝑗 )  ∈  ℝ+ )  | 
						
						
							| 201 | 
							
								12
							 | 
							biimpi | 
							⊢ ( 𝜒  →  ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) ) )  | 
						
						
							| 202 | 
							
								
							 | 
							simp-5l | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  𝜑 )  | 
						
						
							| 203 | 
							
								201 202
							 | 
							syl | 
							⊢ ( 𝜒  →  𝜑 )  | 
						
						
							| 204 | 
							
								203 4
							 | 
							syl | 
							⊢ ( 𝜒  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ )  | 
						
						
							| 205 | 
							
								201
							 | 
							simplrd | 
							⊢ ( 𝜒  →  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 206 | 
							
								204 205
							 | 
							ffvelcdmd | 
							⊢ ( 𝜒  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ )  | 
						
						
							| 207 | 
							
								206
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ )  | 
						
						
							| 208 | 
							
								203 114
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ )  | 
						
						
							| 209 | 
							
								
							 | 
							simp-5r | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  𝑥  ∈  ℝ+ )  | 
						
						
							| 210 | 
							
								201 209
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑥  ∈  ℝ+ )  | 
						
						
							| 211 | 
							
								
							 | 
							eluz2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) )  | 
						
						
							| 212 | 
							
								146 184 190 211
							 | 
							syl3anbrc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 213 | 
							
								203 210 212
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 214 | 
							
								
							 | 
							uzss | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 215 | 
							
								213 214
							 | 
							syl | 
							⊢ ( 𝜒  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 216 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 217 | 
							
								201 216
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 218 | 
							
								215 217
							 | 
							sseldd | 
							⊢ ( 𝜒  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 219 | 
							
								208 218
							 | 
							ffvelcdmd | 
							⊢ ( 𝜒  →  ( 𝑆 ‘ 𝑗 )  ∈  ℝ )  | 
						
						
							| 220 | 
							
								219
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( 𝑆 ‘ 𝑗 )  ∈  ℂ )  | 
						
						
							| 221 | 
							
								203 140
							 | 
							syl | 
							⊢ ( 𝜒  →  ( lim sup ‘ 𝑆 )  ∈  ℂ )  | 
						
						
							| 222 | 
							
								207 220 221
							 | 
							npncand | 
							⊢ ( 𝜒  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  =  ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  | 
						
						
							| 223 | 
							
								222
							 | 
							eqcomd | 
							⊢ ( 𝜒  →  ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) )  =  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  | 
						
						
							| 224 | 
							
								223
							 | 
							fveq2d | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) ) )  | 
						
						
							| 225 | 
							
								206 219
							 | 
							resubcld | 
							⊢ ( 𝜒  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  ∈  ℝ )  | 
						
						
							| 226 | 
							
								203 139
							 | 
							syl | 
							⊢ ( 𝜒  →  ( lim sup ‘ 𝑆 )  ∈  ℝ )  | 
						
						
							| 227 | 
							
								219 226
							 | 
							resubcld | 
							⊢ ( 𝜒  →  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) )  ∈  ℝ )  | 
						
						
							| 228 | 
							
								225 227
							 | 
							readdcld | 
							⊢ ( 𝜒  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  ∈  ℝ )  | 
						
						
							| 229 | 
							
								228
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  ∈  ℂ )  | 
						
						
							| 230 | 
							
								229
							 | 
							abscld | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  ∈  ℝ )  | 
						
						
							| 231 | 
							
								225
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  ∈  ℂ )  | 
						
						
							| 232 | 
							
								231
							 | 
							abscld | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  ∈  ℝ )  | 
						
						
							| 233 | 
							
								227
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) )  ∈  ℂ )  | 
						
						
							| 234 | 
							
								233
							 | 
							abscld | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  ∈  ℝ )  | 
						
						
							| 235 | 
							
								232 234
							 | 
							readdcld | 
							⊢ ( 𝜒  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  +  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  ∈  ℝ )  | 
						
						
							| 236 | 
							
								210
							 | 
							rpred | 
							⊢ ( 𝜒  →  𝑥  ∈  ℝ )  | 
						
						
							| 237 | 
							
								231 233
							 | 
							abstrid | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  ≤  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  +  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) ) )  | 
						
						
							| 238 | 
							
								236
							 | 
							rehalfcld | 
							⊢ ( 𝜒  →  ( 𝑥  /  2 )  ∈  ℝ )  | 
						
						
							| 239 | 
							
								207 220
							 | 
							abssubd | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  | 
						
						
							| 240 | 
							
								203 218 119
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  | 
						
						
							| 241 | 
							
								240
							 | 
							fvoveq1d | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑧 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) ) ) )  | 
						
						
							| 242 | 
							
								203 218 113
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  ∈  ℝ )  | 
						
						
							| 243 | 
							
								242 206
							 | 
							resubcld | 
							⊢ ( 𝜒  →  ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ )  | 
						
						
							| 244 | 
							
								243
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) )  ∈  ℂ )  | 
						
						
							| 245 | 
							
								244
							 | 
							abscld | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) ) )  ∈  ℝ )  | 
						
						
							| 246 | 
							
								203 167
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑌  ∈  ℝ )  | 
						
						
							| 247 | 
							
								203 218 65
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ℝ )  | 
						
						
							| 248 | 
							
								154 205
							 | 
							sselid | 
							⊢ ( 𝜒  →  𝑧  ∈  ℝ )  | 
						
						
							| 249 | 
							
								247 248
							 | 
							resubcld | 
							⊢ ( 𝜒  →  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 )  ∈  ℝ )  | 
						
						
							| 250 | 
							
								246 249
							 | 
							remulcld | 
							⊢ ( 𝜒  →  ( 𝑌  ·  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 ) )  ∈  ℝ )  | 
						
						
							| 251 | 
							
								203 1
							 | 
							syl | 
							⊢ ( 𝜒  →  𝐴  ∈  ℝ )  | 
						
						
							| 252 | 
							
								203 2
							 | 
							syl | 
							⊢ ( 𝜒  →  𝐵  ∈  ℝ )  | 
						
						
							| 253 | 
							
								203 5
							 | 
							syl | 
							⊢ ( 𝜒  →  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 254 | 
							
								165
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  ) )  | 
						
						
							| 255 | 
							
								7
							 | 
							breq2i | 
							⊢ ( ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑌  ↔  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  ) )  | 
						
						
							| 256 | 
							
								255
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑌  ↔  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  ) )  | 
						
						
							| 257 | 
							
								254 256
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑌 )  | 
						
						
							| 258 | 
							
								203 257
							 | 
							syl | 
							⊢ ( 𝜒  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑌 )  | 
						
						
							| 259 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑤  =  𝑥  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑤 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) )  | 
						
						
							| 260 | 
							
								259
							 | 
							breq1d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑤 ) )  ≤  𝑌  ↔  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑌 ) )  | 
						
						
							| 261 | 
							
								260
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑤  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑤 ) )  ≤  𝑌  ↔  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  𝑌 )  | 
						
						
							| 262 | 
							
								258 261
							 | 
							sylibr | 
							⊢ ( 𝜒  →  ∀ 𝑤  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑤 ) )  ≤  𝑌 )  | 
						
						
							| 263 | 
							
								248
							 | 
							rexrd | 
							⊢ ( 𝜒  →  𝑧  ∈  ℝ* )  | 
						
						
							| 264 | 
							
								203 37
							 | 
							syl | 
							⊢ ( 𝜒  →  𝐵  ∈  ℝ* )  | 
						
						
							| 265 | 
							
								248 251
							 | 
							resubcld | 
							⊢ ( 𝜒  →  ( 𝑧  −  𝐴 )  ∈  ℝ )  | 
						
						
							| 266 | 
							
								265
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( 𝑧  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 267 | 
							
								266
							 | 
							abscld | 
							⊢ ( 𝜒  →  ( abs ‘ ( 𝑧  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 268 | 
							
								15 218
							 | 
							sselid | 
							⊢ ( 𝜒  →  𝑗  ∈  ℝ )  | 
						
						
							| 269 | 
							
								203 218 63
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  𝑗  ≠  0 )  | 
						
						
							| 270 | 
							
								268 269
							 | 
							rereccld | 
							⊢ ( 𝜒  →  ( 1  /  𝑗 )  ∈  ℝ )  | 
						
						
							| 271 | 
							
								265
							 | 
							leabsd | 
							⊢ ( 𝜒  →  ( 𝑧  −  𝐴 )  ≤  ( abs ‘ ( 𝑧  −  𝐴 ) ) )  | 
						
						
							| 272 | 
							
								201
							 | 
							simprd | 
							⊢ ( 𝜒  →  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  | 
						
						
							| 273 | 
							
								265 267 270 271 272
							 | 
							lelttrd | 
							⊢ ( 𝜒  →  ( 𝑧  −  𝐴 )  <  ( 1  /  𝑗 ) )  | 
						
						
							| 274 | 
							
								248 251 270
							 | 
							ltsubadd2d | 
							⊢ ( 𝜒  →  ( ( 𝑧  −  𝐴 )  <  ( 1  /  𝑗 )  ↔  𝑧  <  ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  | 
						
						
							| 275 | 
							
								273 274
							 | 
							mpbid | 
							⊢ ( 𝜒  →  𝑧  <  ( 𝐴  +  ( 1  /  𝑗 ) ) )  | 
						
						
							| 276 | 
							
								203 218 111
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  ( 𝐴  +  ( 1  /  𝑗 ) )  <  𝐵 )  | 
						
						
							| 277 | 
							
								263 264 247 275 276
							 | 
							eliood | 
							⊢ ( 𝜒  →  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ( 𝑧 (,) 𝐵 ) )  | 
						
						
							| 278 | 
							
								251 252 204 253 246 262 205 277
							 | 
							dvbdfbdioolem1 | 
							⊢ ( 𝜒  →  ( ( abs ‘ ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) ) )  ≤  ( 𝑌  ·  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 ) )  ∧  ( abs ‘ ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) ) )  ≤  ( 𝑌  ·  ( 𝐵  −  𝐴 ) ) ) )  | 
						
						
							| 279 | 
							
								278
							 | 
							simpld | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) ) )  ≤  ( 𝑌  ·  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 ) ) )  | 
						
						
							| 280 | 
							
								203 218 64
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  ( 1  /  𝑗 )  ∈  ℝ )  | 
						
						
							| 281 | 
							
								246 280
							 | 
							remulcld | 
							⊢ ( 𝜒  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ∈  ℝ )  | 
						
						
							| 282 | 
							
								159 151
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) )  ∈  ℝ )  | 
						
						
							| 283 | 
							
								282
							 | 
							recnd | 
							⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) )  ∈  ℂ )  | 
						
						
							| 284 | 
							
								283
							 | 
							abscld | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) ) )  ∈  ℝ )  | 
						
						
							| 285 | 
							
								283
							 | 
							absge0d | 
							⊢ ( 𝜑  →  0  ≤  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) ) ) )  | 
						
						
							| 286 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑥  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) ) ) )  | 
						
						
							| 287 | 
							
								7
							 | 
							eqcomi | 
							⊢ sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  =  𝑌  | 
						
						
							| 288 | 
							
								287
							 | 
							a1i | 
							⊢ ( 𝑥  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  =  𝑌 )  | 
						
						
							| 289 | 
							
								286 288
							 | 
							breq12d | 
							⊢ ( 𝑥  =  ( ( 𝐴  +  𝐵 )  /  2 )  →  ( ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  )  ↔  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) ) )  ≤  𝑌 ) )  | 
						
						
							| 290 | 
							
								289
							 | 
							rspcva | 
							⊢ ( ( ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ( 𝐴 (,) 𝐵 )  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ,  ℝ ,   <  ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) ) )  ≤  𝑌 )  | 
						
						
							| 291 | 
							
								151 254 290
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ ( ( 𝐴  +  𝐵 )  /  2 ) ) )  ≤  𝑌 )  | 
						
						
							| 292 | 
							
								22 284 167 285 291
							 | 
							letrd | 
							⊢ ( 𝜑  →  0  ≤  𝑌 )  | 
						
						
							| 293 | 
							
								203 292
							 | 
							syl | 
							⊢ ( 𝜒  →  0  ≤  𝑌 )  | 
						
						
							| 294 | 
							
								203 35
							 | 
							syl | 
							⊢ ( 𝜒  →  𝐴  ∈  ℝ* )  | 
						
						
							| 295 | 
							
								
							 | 
							ioogtlb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐴  <  𝑧 )  | 
						
						
							| 296 | 
							
								294 264 205 295
							 | 
							syl3anc | 
							⊢ ( 𝜒  →  𝐴  <  𝑧 )  | 
						
						
							| 297 | 
							
								251 248 247 296
							 | 
							ltsub2dd | 
							⊢ ( 𝜒  →  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 )  <  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝐴 ) )  | 
						
						
							| 298 | 
							
								203 105
							 | 
							syl | 
							⊢ ( 𝜒  →  𝐴  ∈  ℂ )  | 
						
						
							| 299 | 
							
								280
							 | 
							recnd | 
							⊢ ( 𝜒  →  ( 1  /  𝑗 )  ∈  ℂ )  | 
						
						
							| 300 | 
							
								298 299
							 | 
							pncan2d | 
							⊢ ( 𝜒  →  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝐴 )  =  ( 1  /  𝑗 ) )  | 
						
						
							| 301 | 
							
								297 300
							 | 
							breqtrd | 
							⊢ ( 𝜒  →  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 )  <  ( 1  /  𝑗 ) )  | 
						
						
							| 302 | 
							
								249 270 301
							 | 
							ltled | 
							⊢ ( 𝜒  →  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 )  ≤  ( 1  /  𝑗 ) )  | 
						
						
							| 303 | 
							
								249 270 246 293 302
							 | 
							lemul2ad | 
							⊢ ( 𝜒  →  ( 𝑌  ·  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 ) )  ≤  ( 𝑌  ·  ( 1  /  𝑗 ) ) )  | 
						
						
							| 304 | 
							
								281
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  𝑌  =  0 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ∈  ℝ )  | 
						
						
							| 305 | 
							
								238
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  𝑌  =  0 )  →  ( 𝑥  /  2 )  ∈  ℝ )  | 
						
						
							| 306 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑌  =  0  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  =  ( 0  ·  ( 1  /  𝑗 ) ) )  | 
						
						
							| 307 | 
							
								299
							 | 
							mul02d | 
							⊢ ( 𝜒  →  ( 0  ·  ( 1  /  𝑗 ) )  =  0 )  | 
						
						
							| 308 | 
							
								306 307
							 | 
							sylan9eqr | 
							⊢ ( ( 𝜒  ∧  𝑌  =  0 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  =  0 )  | 
						
						
							| 309 | 
							
								210
							 | 
							rphalfcld | 
							⊢ ( 𝜒  →  ( 𝑥  /  2 )  ∈  ℝ+ )  | 
						
						
							| 310 | 
							
								309
							 | 
							rpgt0d | 
							⊢ ( 𝜒  →  0  <  ( 𝑥  /  2 ) )  | 
						
						
							| 311 | 
							
								310
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  𝑌  =  0 )  →  0  <  ( 𝑥  /  2 ) )  | 
						
						
							| 312 | 
							
								308 311
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜒  ∧  𝑌  =  0 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 313 | 
							
								304 305 312
							 | 
							ltled | 
							⊢ ( ( 𝜒  ∧  𝑌  =  0 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 314 | 
							
								246
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  ¬  𝑌  =  0 )  →  𝑌  ∈  ℝ )  | 
						
						
							| 315 | 
							
								293
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  ¬  𝑌  =  0 )  →  0  ≤  𝑌 )  | 
						
						
							| 316 | 
							
								
							 | 
							neqne | 
							⊢ ( ¬  𝑌  =  0  →  𝑌  ≠  0 )  | 
						
						
							| 317 | 
							
								316
							 | 
							adantl | 
							⊢ ( ( 𝜒  ∧  ¬  𝑌  =  0 )  →  𝑌  ≠  0 )  | 
						
						
							| 318 | 
							
								314 315 317
							 | 
							ne0gt0d | 
							⊢ ( ( 𝜒  ∧  ¬  𝑌  =  0 )  →  0  <  𝑌 )  | 
						
						
							| 319 | 
							
								281
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ∈  ℝ )  | 
						
						
							| 320 | 
							
								15 213
							 | 
							sselid | 
							⊢ ( 𝜒  →  𝑁  ∈  ℝ )  | 
						
						
							| 321 | 
							
								
							 | 
							0red | 
							⊢ ( 𝜒  →  0  ∈  ℝ )  | 
						
						
							| 322 | 
							
								203 210 147
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  𝑀  ∈  ℝ )  | 
						
						
							| 323 | 
							
								203 74
							 | 
							syl | 
							⊢ ( 𝜒  →  0  <  𝑀 )  | 
						
						
							| 324 | 
							
								203 210 190
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  𝑀  ≤  𝑁 )  | 
						
						
							| 325 | 
							
								321 322 320 323 324
							 | 
							ltletrd | 
							⊢ ( 𝜒  →  0  <  𝑁 )  | 
						
						
							| 326 | 
							
								325
							 | 
							gt0ne0d | 
							⊢ ( 𝜒  →  𝑁  ≠  0 )  | 
						
						
							| 327 | 
							
								320 326
							 | 
							rereccld | 
							⊢ ( 𝜒  →  ( 1  /  𝑁 )  ∈  ℝ )  | 
						
						
							| 328 | 
							
								246 327
							 | 
							remulcld | 
							⊢ ( 𝜒  →  ( 𝑌  ·  ( 1  /  𝑁 ) )  ∈  ℝ )  | 
						
						
							| 329 | 
							
								328
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  𝑁 ) )  ∈  ℝ )  | 
						
						
							| 330 | 
							
								238
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑥  /  2 )  ∈  ℝ )  | 
						
						
							| 331 | 
							
								280
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 1  /  𝑗 )  ∈  ℝ )  | 
						
						
							| 332 | 
							
								327
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 1  /  𝑁 )  ∈  ℝ )  | 
						
						
							| 333 | 
							
								246
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  𝑌  ∈  ℝ )  | 
						
						
							| 334 | 
							
								293
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  0  ≤  𝑌 )  | 
						
						
							| 335 | 
							
								320 325
							 | 
							elrpd | 
							⊢ ( 𝜒  →  𝑁  ∈  ℝ+ )  | 
						
						
							| 336 | 
							
								203 218 66
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  𝑗  ∈  ℝ+ )  | 
						
						
							| 337 | 
							
								
							 | 
							1red | 
							⊢ ( 𝜒  →  1  ∈  ℝ )  | 
						
						
							| 338 | 
							
								83
							 | 
							a1i | 
							⊢ ( 𝜒  →  0  ≤  1 )  | 
						
						
							| 339 | 
							
								217 192
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑁  ≤  𝑗 )  | 
						
						
							| 340 | 
							
								335 336 337 338 339
							 | 
							lediv2ad | 
							⊢ ( 𝜒  →  ( 1  /  𝑗 )  ≤  ( 1  /  𝑁 ) )  | 
						
						
							| 341 | 
							
								340
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 1  /  𝑗 )  ≤  ( 1  /  𝑁 ) )  | 
						
						
							| 342 | 
							
								331 332 333 334 341
							 | 
							lemul2ad | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ≤  ( 𝑌  ·  ( 1  /  𝑁 ) ) )  | 
						
						
							| 343 | 
							
								236
							 | 
							recnd | 
							⊢ ( 𝜒  →  𝑥  ∈  ℂ )  | 
						
						
							| 344 | 
							
								
							 | 
							2cnd | 
							⊢ ( 𝜒  →  2  ∈  ℂ )  | 
						
						
							| 345 | 
							
								210
							 | 
							rpne0d | 
							⊢ ( 𝜒  →  𝑥  ≠  0 )  | 
						
						
							| 346 | 
							
								177
							 | 
							a1i | 
							⊢ ( 𝜒  →  2  ≠  0 )  | 
						
						
							| 347 | 
							
								343 344 345 346
							 | 
							divne0d | 
							⊢ ( 𝜒  →  ( 𝑥  /  2 )  ≠  0 )  | 
						
						
							| 348 | 
							
								246 238 347
							 | 
							redivcld | 
							⊢ ( 𝜒  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ∈  ℝ )  | 
						
						
							| 349 | 
							
								348
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ∈  ℝ )  | 
						
						
							| 350 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  0  <  𝑌 )  | 
						
						
							| 351 | 
							
								310
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  0  <  ( 𝑥  /  2 ) )  | 
						
						
							| 352 | 
							
								333 330 350 351
							 | 
							divgt0d | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  0  <  ( 𝑌  /  ( 𝑥  /  2 ) ) )  | 
						
						
							| 353 | 
							
								349 352
							 | 
							elrpd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ∈  ℝ+ )  | 
						
						
							| 354 | 
							
								353
							 | 
							rprecred | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 1  /  ( 𝑌  /  ( 𝑥  /  2 ) ) )  ∈  ℝ )  | 
						
						
							| 355 | 
							
								335
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  𝑁  ∈  ℝ+ )  | 
						
						
							| 356 | 
							
								
							 | 
							1red | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  1  ∈  ℝ )  | 
						
						
							| 357 | 
							
								83
							 | 
							a1i | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  0  ≤  1 )  | 
						
						
							| 358 | 
							
								348
							 | 
							flcld | 
							⊢ ( 𝜒  →  ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  ∈  ℤ )  | 
						
						
							| 359 | 
							
								358
							 | 
							peano2zd | 
							⊢ ( 𝜒  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ∈  ℤ )  | 
						
						
							| 360 | 
							
								359
							 | 
							zred | 
							⊢ ( 𝜒  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ∈  ℝ )  | 
						
						
							| 361 | 
							
								203 145
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑀  ∈  ℤ )  | 
						
						
							| 362 | 
							
								359 361
							 | 
							ifcld | 
							⊢ ( 𝜒  →  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 )  ∈  ℤ )  | 
						
						
							| 363 | 
							
								11 362
							 | 
							eqeltrid | 
							⊢ ( 𝜒  →  𝑁  ∈  ℤ )  | 
						
						
							| 364 | 
							
								363
							 | 
							zred | 
							⊢ ( 𝜒  →  𝑁  ∈  ℝ )  | 
						
						
							| 365 | 
							
								
							 | 
							flltp1 | 
							⊢ ( ( 𝑌  /  ( 𝑥  /  2 ) )  ∈  ℝ  →  ( 𝑌  /  ( 𝑥  /  2 ) )  <  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) )  | 
						
						
							| 366 | 
							
								348 365
							 | 
							syl | 
							⊢ ( 𝜒  →  ( 𝑌  /  ( 𝑥  /  2 ) )  <  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) )  | 
						
						
							| 367 | 
							
								203 69
							 | 
							syl | 
							⊢ ( 𝜒  →  𝑀  ∈  ℝ )  | 
						
						
							| 368 | 
							
								
							 | 
							max2 | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ∈  ℝ )  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 369 | 
							
								367 360 368
							 | 
							syl2anc | 
							⊢ ( 𝜒  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 ) ,  𝑀 ) )  | 
						
						
							| 370 | 
							
								369 11
							 | 
							breqtrrdi | 
							⊢ ( 𝜒  →  ( ( ⌊ ‘ ( 𝑌  /  ( 𝑥  /  2 ) ) )  +  1 )  ≤  𝑁 )  | 
						
						
							| 371 | 
							
								348 360 364 366 370
							 | 
							ltletrd | 
							⊢ ( 𝜒  →  ( 𝑌  /  ( 𝑥  /  2 ) )  <  𝑁 )  | 
						
						
							| 372 | 
							
								348 320 371
							 | 
							ltled | 
							⊢ ( 𝜒  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ≤  𝑁 )  | 
						
						
							| 373 | 
							
								372
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ≤  𝑁 )  | 
						
						
							| 374 | 
							
								353 355 356 357 373
							 | 
							lediv2ad | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 1  /  𝑁 )  ≤  ( 1  /  ( 𝑌  /  ( 𝑥  /  2 ) ) ) )  | 
						
						
							| 375 | 
							
								332 354 333 334 374
							 | 
							lemul2ad | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  𝑁 ) )  ≤  ( 𝑌  ·  ( 1  /  ( 𝑌  /  ( 𝑥  /  2 ) ) ) ) )  | 
						
						
							| 376 | 
							
								333
							 | 
							recnd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  𝑌  ∈  ℂ )  | 
						
						
							| 377 | 
							
								349
							 | 
							recnd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ∈  ℂ )  | 
						
						
							| 378 | 
							
								352
							 | 
							gt0ne0d | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑥  /  2 ) )  ≠  0 )  | 
						
						
							| 379 | 
							
								376 377 378
							 | 
							divrecd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑌  /  ( 𝑥  /  2 ) ) )  =  ( 𝑌  ·  ( 1  /  ( 𝑌  /  ( 𝑥  /  2 ) ) ) ) )  | 
						
						
							| 380 | 
							
								330
							 | 
							recnd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑥  /  2 )  ∈  ℂ )  | 
						
						
							| 381 | 
							
								350
							 | 
							gt0ne0d | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  𝑌  ≠  0 )  | 
						
						
							| 382 | 
							
								347
							 | 
							adantr | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑥  /  2 )  ≠  0 )  | 
						
						
							| 383 | 
							
								376 380 381 382
							 | 
							ddcand | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  /  ( 𝑌  /  ( 𝑥  /  2 ) ) )  =  ( 𝑥  /  2 ) )  | 
						
						
							| 384 | 
							
								379 383
							 | 
							eqtr3d | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  ( 𝑌  /  ( 𝑥  /  2 ) ) ) )  =  ( 𝑥  /  2 ) )  | 
						
						
							| 385 | 
							
								375 384
							 | 
							breqtrd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  𝑁 ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 386 | 
							
								319 329 330 342 385
							 | 
							letrd | 
							⊢ ( ( 𝜒  ∧  0  <  𝑌 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 387 | 
							
								318 386
							 | 
							syldan | 
							⊢ ( ( 𝜒  ∧  ¬  𝑌  =  0 )  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 388 | 
							
								313 387
							 | 
							pm2.61dan | 
							⊢ ( 𝜒  →  ( 𝑌  ·  ( 1  /  𝑗 ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 389 | 
							
								250 281 238 303 388
							 | 
							letrd | 
							⊢ ( 𝜒  →  ( 𝑌  ·  ( ( 𝐴  +  ( 1  /  𝑗 ) )  −  𝑧 ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 390 | 
							
								245 250 238 279 389
							 | 
							letrd | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  −  ( 𝐹 ‘ 𝑧 ) ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 391 | 
							
								241 390
							 | 
							eqbrtrd | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑧 ) ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 392 | 
							
								239 391
							 | 
							eqbrtrd | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  ≤  ( 𝑥  /  2 ) )  | 
						
						
							| 393 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 394 | 
							
								201 393
							 | 
							syl | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 395 | 
							
								232 234 238 238 392 394
							 | 
							leltaddd | 
							⊢ ( 𝜒  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  +  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  <  ( ( 𝑥  /  2 )  +  ( 𝑥  /  2 ) ) )  | 
						
						
							| 396 | 
							
								343
							 | 
							2halvesd | 
							⊢ ( 𝜒  →  ( ( 𝑥  /  2 )  +  ( 𝑥  /  2 ) )  =  𝑥 )  | 
						
						
							| 397 | 
							
								395 396
							 | 
							breqtrd | 
							⊢ ( 𝜒  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) ) )  +  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  <  𝑥 )  | 
						
						
							| 398 | 
							
								230 235 236 237 397
							 | 
							lelttrd | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑆 ‘ 𝑗 ) )  +  ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) ) )  <  𝑥 )  | 
						
						
							| 399 | 
							
								224 398
							 | 
							eqbrtrd | 
							⊢ ( 𝜒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 )  | 
						
						
							| 400 | 
							
								12 399
							 | 
							sylbir | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 )  | 
						
						
							| 401 | 
							
								400
							 | 
							adantrl | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 )  | 
						
						
							| 402 | 
							
								401
							 | 
							ex | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  𝑧  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  | 
						
						
							| 403 | 
							
								402
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  →  ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  | 
						
						
							| 404 | 
							
								
							 | 
							brimralrspcev | 
							⊢ ( ( ( 1  /  𝑗 )  ∈  ℝ+  ∧  ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  ( 1  /  𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  →  ∃ 𝑦  ∈  ℝ+ ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  | 
						
						
							| 405 | 
							
								200 403 404
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  →  ∃ 𝑦  ∈  ℝ+ ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  | 
						
						
							| 406 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ≤  𝑁 )  →  𝑏  ≤  𝑁 )  | 
						
						
							| 407 | 
							
								406
							 | 
							iftrued | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ≤  𝑁 )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  =  𝑁 )  | 
						
						
							| 408 | 
							
								
							 | 
							uzid | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 409 | 
							
								184 408
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 410 | 
							
								409
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ≤  𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 411 | 
							
								407 410
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ≤  𝑁 )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 412 | 
							
								411
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  𝑏  ≤  𝑁 )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 413 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝑏  ≤  𝑁  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  =  𝑏 )  | 
						
						
							| 414 | 
							
								413
							 | 
							adantl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  =  𝑏 )  | 
						
						
							| 415 | 
							
								184
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 416 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑏  ∈  ℤ )  | 
						
						
							| 417 | 
							
								415
							 | 
							zred | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑁  ∈  ℝ )  | 
						
						
							| 418 | 
							
								416
							 | 
							zred | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑏  ∈  ℝ )  | 
						
						
							| 419 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  ¬  𝑏  ≤  𝑁 )  | 
						
						
							| 420 | 
							
								417 418
							 | 
							ltnled | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  ( 𝑁  <  𝑏  ↔  ¬  𝑏  ≤  𝑁 ) )  | 
						
						
							| 421 | 
							
								419 420
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑁  <  𝑏 )  | 
						
						
							| 422 | 
							
								417 418 421
							 | 
							ltled | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑁  ≤  𝑏 )  | 
						
						
							| 423 | 
							
								
							 | 
							eluz2 | 
							⊢ ( 𝑏  ∈  ( ℤ≥ ‘ 𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  𝑏  ∈  ℤ  ∧  𝑁  ≤  𝑏 ) )  | 
						
						
							| 424 | 
							
								415 416 422 423
							 | 
							syl3anbrc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  𝑏  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 425 | 
							
								414 424
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ¬  𝑏  ≤  𝑁 )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 426 | 
							
								412 425
							 | 
							pm2.61dan | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 427 | 
							
								426
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 428 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  →  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 429 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  𝑏  ∈  ℤ )  | 
						
						
							| 430 | 
							
								184
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  𝑁  ∈  ℤ )  | 
						
						
							| 431 | 
							
								430 429
							 | 
							ifcld | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ℤ )  | 
						
						
							| 432 | 
							
								429
							 | 
							zred | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  𝑏  ∈  ℝ )  | 
						
						
							| 433 | 
							
								430
							 | 
							zred | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  𝑁  ∈  ℝ )  | 
						
						
							| 434 | 
							
								
							 | 
							max1 | 
							⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑏  ≤  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  | 
						
						
							| 435 | 
							
								432 433 434
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  𝑏  ≤  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  | 
						
						
							| 436 | 
							
								
							 | 
							eluz2 | 
							⊢ ( if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑏 )  ↔  ( 𝑏  ∈  ℤ  ∧  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ℤ  ∧  𝑏  ≤  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) ) )  | 
						
						
							| 437 | 
							
								429 431 435 436
							 | 
							syl3anbrc | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑏 ) )  | 
						
						
							| 438 | 
							
								437
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  →  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑏 ) )  | 
						
						
							| 439 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑐  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( 𝑆 ‘ 𝑐 )  =  ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) ) )  | 
						
						
							| 440 | 
							
								439
							 | 
							eleq1d | 
							⊢ ( 𝑐  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ↔  ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  ∈  ℂ ) )  | 
						
						
							| 441 | 
							
								439
							 | 
							fvoveq1d | 
							⊢ ( 𝑐  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  =  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) ) )  | 
						
						
							| 442 | 
							
								441
							 | 
							breq1d | 
							⊢ ( 𝑐  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 )  ↔  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 443 | 
							
								440 442
							 | 
							anbi12d | 
							⊢ ( 𝑐  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ↔  ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) ) )  | 
						
						
							| 444 | 
							
								443
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  ∧  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑏 ) )  →  ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 445 | 
							
								428 438 444
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  →  ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 446 | 
							
								445
							 | 
							simprd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  →  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 447 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) ) )  | 
						
						
							| 448 | 
							
								447
							 | 
							fvoveq1d | 
							⊢ ( 𝑗  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  =  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) ) )  | 
						
						
							| 449 | 
							
								448
							 | 
							breq1d | 
							⊢ ( 𝑗  =  if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  →  ( ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 )  ↔  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 450 | 
							
								449
							 | 
							rspcev | 
							⊢ ( ( if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 )  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏  ≤  𝑁 ,  𝑁 ,  𝑏 ) )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 451 | 
							
								427 446 450
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑏  ∈  ℤ )  ∧  ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 452 | 
							
								
							 | 
							ax-resscn | 
							⊢ ℝ  ⊆  ℂ  | 
						
						
							| 453 | 
							
								452
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℝ  ⊆  ℂ )  | 
						
						
							| 454 | 
							
								4 453
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )  | 
						
						
							| 455 | 
							
								
							 | 
							dvcn | 
							⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℝ )  ∧  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) )  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 456 | 
							
								453 454 155 5 455
							 | 
							syl31anc | 
							⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 457 | 
							
								
							 | 
							cncfcdm | 
							⊢ ( ( ℝ  ⊆  ℂ  ∧  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  →  ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  ↔  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) )  | 
						
						
							| 458 | 
							
								453 456 457
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  ↔  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) )  | 
						
						
							| 459 | 
							
								4 458
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) )  | 
						
						
							| 460 | 
							
								112 10
							 | 
							fmptd | 
							⊢ ( 𝜑  →  𝑅 : ( ℤ≥ ‘ 𝑀 ) ⟶ ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 461 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) )  | 
						
						
							| 462 | 
							
								
							 | 
							climrel | 
							⊢ Rel   ⇝   | 
						
						
							| 463 | 
							
								462
							 | 
							a1i | 
							⊢ ( 𝜑  →  Rel   ⇝  )  | 
						
						
							| 464 | 
							
								
							 | 
							fvex | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ∈  V  | 
						
						
							| 465 | 
							
								464
							 | 
							mptex | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 )  ∈  V  | 
						
						
							| 466 | 
							
								465
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 )  ∈  V )  | 
						
						
							| 467 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) )  | 
						
						
							| 468 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑗  =  𝑚 )  →  𝐴  =  𝐴 )  | 
						
						
							| 469 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 470 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 471 | 
							
								467 468 469 470
							 | 
							fvmptd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) ‘ 𝑚 )  =  𝐴 )  | 
						
						
							| 472 | 
							
								31 145 466 105 471
							 | 
							climconst | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 )  ⇝  𝐴 )  | 
						
						
							| 473 | 
							
								464
							 | 
							mptex | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐴  +  ( 1  /  𝑗 ) ) )  ∈  V  | 
						
						
							| 474 | 
							
								10 473
							 | 
							eqeltri | 
							⊢ 𝑅  ∈  V  | 
						
						
							| 475 | 
							
								474
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑅  ∈  V )  | 
						
						
							| 476 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝜑  →  1  ∈  ℂ )  | 
						
						
							| 477 | 
							
								
							 | 
							elnnnn0b | 
							⊢ ( 𝑀  ∈  ℕ  ↔  ( 𝑀  ∈  ℕ0  ∧  0  <  𝑀 ) )  | 
						
						
							| 478 | 
							
								29 74 477
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 479 | 
							
								
							 | 
							divcnvg | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) )  ⇝  0 )  | 
						
						
							| 480 | 
							
								476 478 479
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) )  ⇝  0 )  | 
						
						
							| 481 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) )  | 
						
						
							| 482 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑗  =  𝑖 )  →  𝐴  =  𝐴 )  | 
						
						
							| 483 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 484 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 485 | 
							
								481 482 483 484
							 | 
							fvmptd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) ‘ 𝑖 )  =  𝐴 )  | 
						
						
							| 486 | 
							
								105
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  ∈  ℂ )  | 
						
						
							| 487 | 
							
								485 486
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 488 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) ) )  | 
						
						
							| 489 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  𝑖  →  ( 1  /  𝑗 )  =  ( 1  /  𝑖 ) )  | 
						
						
							| 490 | 
							
								489
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑗  =  𝑖 )  →  ( 1  /  𝑗 )  =  ( 1  /  𝑖 ) )  | 
						
						
							| 491 | 
							
								15 483
							 | 
							sselid | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑖  ∈  ℝ )  | 
						
						
							| 492 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  ∈  ℝ )  | 
						
						
							| 493 | 
							
								69
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  ∈  ℝ )  | 
						
						
							| 494 | 
							
								74
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  <  𝑀 )  | 
						
						
							| 495 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑖  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑖 )  | 
						
						
							| 496 | 
							
								495
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑀  ≤  𝑖 )  | 
						
						
							| 497 | 
							
								492 493 491 494 496
							 | 
							ltletrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  0  <  𝑖 )  | 
						
						
							| 498 | 
							
								497
							 | 
							gt0ne0d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑖  ≠  0 )  | 
						
						
							| 499 | 
							
								491 498
							 | 
							rereccld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  /  𝑖 )  ∈  ℝ )  | 
						
						
							| 500 | 
							
								488 490 483 499
							 | 
							fvmptd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) ) ‘ 𝑖 )  =  ( 1  /  𝑖 ) )  | 
						
						
							| 501 | 
							
								491
							 | 
							recnd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑖  ∈  ℂ )  | 
						
						
							| 502 | 
							
								501 498
							 | 
							reccld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 1  /  𝑖 )  ∈  ℂ )  | 
						
						
							| 503 | 
							
								500 502
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) ) ‘ 𝑖 )  ∈  ℂ )  | 
						
						
							| 504 | 
							
								489
							 | 
							oveq2d | 
							⊢ ( 𝑗  =  𝑖  →  ( 𝐴  +  ( 1  /  𝑗 ) )  =  ( 𝐴  +  ( 1  /  𝑖 ) ) )  | 
						
						
							| 505 | 
							
								484 499
							 | 
							readdcld | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑖 ) )  ∈  ℝ )  | 
						
						
							| 506 | 
							
								10 504 483 505
							 | 
							fvmptd3 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝐴  +  ( 1  /  𝑖 ) ) )  | 
						
						
							| 507 | 
							
								485 500
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) ‘ 𝑖 )  +  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) ) ‘ 𝑖 ) )  =  ( 𝐴  +  ( 1  /  𝑖 ) ) )  | 
						
						
							| 508 | 
							
								506 507
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  𝐴 ) ‘ 𝑖 )  +  ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 1  /  𝑗 ) ) ‘ 𝑖 ) ) )  | 
						
						
							| 509 | 
							
								31 145 472 475 480 487 503 508
							 | 
							climadd | 
							⊢ ( 𝜑  →  𝑅  ⇝  ( 𝐴  +  0 ) )  | 
						
						
							| 510 | 
							
								105
							 | 
							addridd | 
							⊢ ( 𝜑  →  ( 𝐴  +  0 )  =  𝐴 )  | 
						
						
							| 511 | 
							
								509 510
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  𝑅  ⇝  𝐴 )  | 
						
						
							| 512 | 
							
								
							 | 
							releldm | 
							⊢ ( ( Rel   ⇝   ∧  𝑅  ⇝  𝐴 )  →  𝑅  ∈  dom   ⇝  )  | 
						
						
							| 513 | 
							
								463 511 512
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑅  ∈  dom   ⇝  )  | 
						
						
							| 514 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑘  →  ( ℤ≥ ‘ 𝑙 )  =  ( ℤ≥ ‘ 𝑘 ) )  | 
						
						
							| 515 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑘  →  ( 𝑅 ‘ 𝑙 )  =  ( 𝑅 ‘ 𝑘 ) )  | 
						
						
							| 516 | 
							
								515
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝑘  →  ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) )  =  ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  | 
						
						
							| 517 | 
							
								516
							 | 
							fveq2d | 
							⊢ ( 𝑙  =  𝑘  →  ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) ) )  =  ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) ) )  | 
						
						
							| 518 | 
							
								517
							 | 
							breq1d | 
							⊢ ( 𝑙  =  𝑘  →  ( ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) )  ↔  ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) ) )  | 
						
						
							| 519 | 
							
								514 518
							 | 
							raleqbidv | 
							⊢ ( 𝑙  =  𝑘  →  ( ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) ) )  | 
						
						
							| 520 | 
							
								519
							 | 
							cbvrabv | 
							⊢ { 𝑙  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  =  { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  | 
						
						
							| 521 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ℎ  =  𝑖  →  ( 𝑅 ‘ ℎ )  =  ( 𝑅 ‘ 𝑖 ) )  | 
						
						
							| 522 | 
							
								521
							 | 
							fvoveq1d | 
							⊢ ( ℎ  =  𝑖  →  ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  =  ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) ) )  | 
						
						
							| 523 | 
							
								522
							 | 
							breq1d | 
							⊢ ( ℎ  =  𝑖  →  ( ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) )  ↔  ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) ) )  | 
						
						
							| 524 | 
							
								523
							 | 
							cbvralvw | 
							⊢ ( ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) )  | 
						
						
							| 525 | 
							
								524
							 | 
							rgenw | 
							⊢ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) )  | 
						
						
							| 526 | 
							
								
							 | 
							rabbi | 
							⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) )  ↔  { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  =  { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) } )  | 
						
						
							| 527 | 
							
								525 526
							 | 
							mpbi | 
							⊢ { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  =  { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  | 
						
						
							| 528 | 
							
								520 527
							 | 
							eqtri | 
							⊢ { 𝑙  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  =  { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) }  | 
						
						
							| 529 | 
							
								528
							 | 
							infeq1i | 
							⊢ inf ( { 𝑙  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ ℎ  ∈  ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ )  −  ( 𝑅 ‘ 𝑙 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) } ,  ℝ ,   <  )  =  inf ( { 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∣  ∀ 𝑖  ∈  ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 )  −  ( 𝑅 ‘ 𝑘 ) ) )  <  ( 𝑥  /  ( sup ( ran  ( 𝑧  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑧 ) ) ) ,  ℝ ,   <  )  +  1 ) ) } ,  ℝ ,   <  )  | 
						
						
							| 530 | 
							
								1 2 3 459 5 6 30 460 461 513 529
							 | 
							ioodvbdlimc1lem1 | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) )  ⇝  ( lim sup ‘ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 531 | 
							
								10
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐴  +  ( 1  /  𝑗 ) )  ∈  ℝ )  →  ( 𝑅 ‘ 𝑗 )  =  ( 𝐴  +  ( 1  /  𝑗 ) ) )  | 
						
						
							| 532 | 
							
								117 65 531
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑅 ‘ 𝑗 )  =  ( 𝐴  +  ( 1  /  𝑗 ) ) )  | 
						
						
							| 533 | 
							
								532
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  +  ( 1  /  𝑗 ) )  =  ( 𝑅 ‘ 𝑗 ) )  | 
						
						
							| 534 | 
							
								533
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) )  =  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) )  | 
						
						
							| 535 | 
							
								534
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) )  | 
						
						
							| 536 | 
							
								9 535
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝑆  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) )  | 
						
						
							| 537 | 
							
								536
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( lim sup ‘ 𝑆 )  =  ( lim sup ‘ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 538 | 
							
								530 536 537
							 | 
							3brtr4d | 
							⊢ ( 𝜑  →  𝑆  ⇝  ( lim sup ‘ 𝑆 ) )  | 
						
						
							| 539 | 
							
								464
							 | 
							mptex | 
							⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐹 ‘ ( 𝐴  +  ( 1  /  𝑗 ) ) ) )  ∈  V  | 
						
						
							| 540 | 
							
								9 539
							 | 
							eqeltri | 
							⊢ 𝑆  ∈  V  | 
						
						
							| 541 | 
							
								540
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑆  ∈  V )  | 
						
						
							| 542 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑐  ∈  ℤ )  →  ( 𝑆 ‘ 𝑐 )  =  ( 𝑆 ‘ 𝑐 ) )  | 
						
						
							| 543 | 
							
								541 542
							 | 
							clim | 
							⊢ ( 𝜑  →  ( 𝑆  ⇝  ( lim sup ‘ 𝑆 )  ↔  ( ( lim sup ‘ 𝑆 )  ∈  ℂ  ∧  ∀ 𝑎  ∈  ℝ+ ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 ) ) ) )  | 
						
						
							| 544 | 
							
								538 543
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( lim sup ‘ 𝑆 )  ∈  ℂ  ∧  ∀ 𝑎  ∈  ℝ+ ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 ) ) )  | 
						
						
							| 545 | 
							
								544
							 | 
							simprd | 
							⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℝ+ ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 ) )  | 
						
						
							| 546 | 
							
								545
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∀ 𝑎  ∈  ℝ+ ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 ) )  | 
						
						
							| 547 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ )  | 
						
						
							| 548 | 
							
								547
							 | 
							rphalfcld | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  /  2 )  ∈  ℝ+ )  | 
						
						
							| 549 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑎  =  ( 𝑥  /  2 )  →  ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎  ↔  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 550 | 
							
								549
							 | 
							anbi2d | 
							⊢ ( 𝑎  =  ( 𝑥  /  2 )  →  ( ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 )  ↔  ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) ) )  | 
						
						
							| 551 | 
							
								550
							 | 
							rexralbidv | 
							⊢ ( 𝑎  =  ( 𝑥  /  2 )  →  ( ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 )  ↔  ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) ) )  | 
						
						
							| 552 | 
							
								551
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑎  ∈  ℝ+ ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑎 )  ∧  ( 𝑥  /  2 )  ∈  ℝ+ )  →  ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 553 | 
							
								546 548 552
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑏  ∈  ℤ ∀ 𝑐  ∈  ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝑆 ‘ 𝑐 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) ) )  | 
						
						
							| 554 | 
							
								451 553
							 | 
							r19.29a | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 )  −  ( lim sup ‘ 𝑆 ) ) )  <  ( 𝑥  /  2 ) )  | 
						
						
							| 555 | 
							
								405 554
							 | 
							r19.29a | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℝ+ ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  | 
						
						
							| 556 | 
							
								555
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℝ+ ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) )  | 
						
						
							| 557 | 
							
								
							 | 
							ioosscn | 
							⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℂ  | 
						
						
							| 558 | 
							
								557
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ℂ )  | 
						
						
							| 559 | 
							
								454 558 105
							 | 
							ellimc3 | 
							⊢ ( 𝜑  →  ( ( lim sup ‘ 𝑆 )  ∈  ( 𝐹  limℂ  𝐴 )  ↔  ( ( lim sup ‘ 𝑆 )  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℝ+ ∀ 𝑧  ∈  ( 𝐴 (,) 𝐵 ) ( ( 𝑧  ≠  𝐴  ∧  ( abs ‘ ( 𝑧  −  𝐴 ) )  <  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( lim sup ‘ 𝑆 ) ) )  <  𝑥 ) ) ) )  | 
						
						
							| 560 | 
							
								140 556 559
							 | 
							mpbir2and | 
							⊢ ( 𝜑  →  ( lim sup ‘ 𝑆 )  ∈  ( 𝐹  limℂ  𝐴 ) )  |