Step |
Hyp |
Ref |
Expression |
1 |
|
ioodvbdlimc1lem2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ioodvbdlimc1lem2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ioodvbdlimc1lem2.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
ioodvbdlimc1lem2.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
5 |
|
ioodvbdlimc1lem2.dmdv |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
6 |
|
ioodvbdlimc1lem2.dvbd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑦 ) |
7 |
|
ioodvbdlimc1lem2.y |
⊢ 𝑌 = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
8 |
|
ioodvbdlimc1lem2.m |
⊢ 𝑀 = ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) |
9 |
|
ioodvbdlimc1lem2.s |
⊢ 𝑆 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) |
10 |
|
ioodvbdlimc1lem2.r |
⊢ 𝑅 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 + ( 1 / 𝑗 ) ) ) |
11 |
|
ioodvbdlimc1lem2.n |
⊢ 𝑁 = if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) |
12 |
|
ioodvbdlimc1lem2.ch |
⊢ ( 𝜒 ↔ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) ) |
13 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
14 |
|
zssre |
⊢ ℤ ⊆ ℝ |
15 |
13 14
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ ) |
17 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
18 |
1 2
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
19 |
3 18
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
20 |
19
|
gt0ne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≠ 0 ) |
21 |
17 20
|
rereccld |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
22 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
23 |
17 19
|
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / ( 𝐵 − 𝐴 ) ) ) |
24 |
22 21 23
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ) |
25 |
|
flge0nn0 |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ) → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 ) |
26 |
21 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 ) |
27 |
|
peano2nn0 |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
29 |
8 28
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
30 |
29
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
31 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
32 |
31
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( ( ℤ≥ ‘ 𝑀 ) , ℝ* , < ) = +∞ ) |
33 |
30 32
|
syl |
⊢ ( 𝜑 → sup ( ( ℤ≥ ‘ 𝑀 ) , ℝ* , < ) = +∞ ) |
34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
35 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
37 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
39 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
40 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℝ ) |
42 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
43 |
|
0red |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 0 ∈ ℝ ) |
44 |
|
1red |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 1 ∈ ℝ ) |
45 |
43 44
|
readdcld |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 + 1 ) ∈ ℝ ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ∈ ℝ ) |
47 |
43
|
ltp1d |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 0 < ( 0 + 1 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < ( 0 + 1 ) ) |
49 |
|
eluzel2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
50 |
49
|
zred |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
52 |
21
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℤ ) |
53 |
52
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
54 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
55 |
26
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ) |
56 |
22 53 54 55
|
leadd1dd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
57 |
56 8
|
breqtrrdi |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ 𝑀 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ≤ 𝑀 ) |
59 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑗 ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑗 ) |
61 |
46 51 41 58 60
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ≤ 𝑗 ) |
62 |
42 46 41 48 61
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑗 ) |
63 |
62
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ≠ 0 ) |
64 |
41 63
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ∈ ℝ ) |
65 |
39 64
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ℝ ) |
66 |
41 62
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℝ+ ) |
67 |
66
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
68 |
39 67
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 < ( 𝐴 + ( 1 / 𝑗 ) ) ) |
69 |
29
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
70 |
22 54
|
readdcld |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℝ ) |
71 |
53 54
|
readdcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
72 |
22
|
ltp1d |
⊢ ( 𝜑 → 0 < ( 0 + 1 ) ) |
73 |
22 70 71 72 56
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
74 |
73 8
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑀 ) |
75 |
74
|
gt0ne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
76 |
69 75
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑀 ) ∈ ℝ ) |
78 |
39 77
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑀 ) ) ∈ ℝ ) |
79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
80 |
69 74
|
elrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
82 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℝ ) |
83 |
|
0le1 |
⊢ 0 ≤ 1 |
84 |
83
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ≤ 1 ) |
85 |
81 66 82 84 60
|
lediv2ad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ≤ ( 1 / 𝑀 ) ) |
86 |
64 77 39 85
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑗 ) ) ≤ ( 𝐴 + ( 1 / 𝑀 ) ) ) |
87 |
8
|
eqcomi |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) = 𝑀 |
88 |
87
|
oveq2i |
⊢ ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) = ( 1 / 𝑀 ) |
89 |
88 76
|
eqeltrid |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ∈ ℝ ) |
90 |
21 23
|
elrpd |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ+ ) |
91 |
71 73
|
elrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℝ+ ) |
92 |
|
1rp |
⊢ 1 ∈ ℝ+ |
93 |
92
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
94 |
|
fllelt |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ∧ ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
95 |
21 94
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ∧ ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
96 |
95
|
simprd |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
97 |
90 91 93 96
|
ltdiv2dd |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) < ( 1 / ( 1 / ( 𝐵 − 𝐴 ) ) ) ) |
98 |
17
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
99 |
98 20
|
recrecd |
⊢ ( 𝜑 → ( 1 / ( 1 / ( 𝐵 − 𝐴 ) ) ) = ( 𝐵 − 𝐴 ) ) |
100 |
97 99
|
breqtrd |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) < ( 𝐵 − 𝐴 ) ) |
101 |
89 17 1 100
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) < ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
102 |
8
|
oveq2i |
⊢ ( 1 / 𝑀 ) = ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
103 |
102
|
oveq2i |
⊢ ( 𝐴 + ( 1 / 𝑀 ) ) = ( 𝐴 + ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
104 |
103
|
a1i |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 𝑀 ) ) = ( 𝐴 + ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) ) |
105 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
106 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
107 |
105 106
|
pncan3d |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |
108 |
107
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
109 |
101 104 108
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 𝑀 ) ) < 𝐵 ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑀 ) ) < 𝐵 ) |
111 |
65 78 79 86 110
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑗 ) ) < 𝐵 ) |
112 |
36 38 65 68 111
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
113 |
34 112
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ∈ ℝ ) |
114 |
113 9
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ ) |
115 |
1 2 3 4 5 6
|
dvbdfbdioo |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
116 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → 𝑀 ∈ ℝ ) |
117 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
118 |
9
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ∈ ℝ ) → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) |
119 |
117 113 118
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) |
120 |
119
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ) |
121 |
120
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ) |
122 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
123 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
124 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝐴 + ( 1 / 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ) |
125 |
124
|
breq1d |
⊢ ( 𝑥 = ( 𝐴 + ( 1 / 𝑗 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) ) |
126 |
125
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ∧ ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) |
127 |
122 123 126
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) |
128 |
121 127
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) |
129 |
128
|
a1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
130 |
129
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
131 |
|
breq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑗 ↔ 𝑀 ≤ 𝑗 ) ) |
132 |
131
|
imbi1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ↔ ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
133 |
132
|
ralbidv |
⊢ ( 𝑘 = 𝑀 → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
134 |
133
|
rspcev |
⊢ ( ( 𝑀 ∈ ℝ ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
135 |
116 130 134
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
136 |
135
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
137 |
136
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
138 |
115 137
|
mpd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
139 |
16 33 114 138
|
limsupre |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ℝ ) |
140 |
139
|
recnd |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ℂ ) |
141 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ ℝ ) |
142 |
141
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ ) |
143 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ∈ ℝ ) |
144 |
52
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℤ ) |
145 |
8 144
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
147 |
146
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
148 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
149 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < 𝑀 ) |
150 |
|
ioomidp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
151 |
1 2 3 150
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
152 |
|
ne0i |
⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
153 |
151 152
|
syl |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
154 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
155 |
154
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
156 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
157 |
4 155 156
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
158 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
159 |
157 158
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
160 |
159
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
161 |
160
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
162 |
161
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
163 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
164 |
|
eqid |
⊢ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
165 |
153 162 6 163 164
|
suprnmpt |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) ) |
166 |
165
|
simpld |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ∈ ℝ ) |
167 |
7 166
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
168 |
167
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑌 ∈ ℝ ) |
169 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
170 |
169
|
rehalfcld |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ ) |
171 |
170
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ ) |
172 |
169
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
173 |
172
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
174 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℂ ) |
175 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
176 |
175
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
177 |
|
2ne0 |
⊢ 2 ≠ 0 |
178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ≠ 0 ) |
179 |
173 174 176 178
|
divne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ≠ 0 ) |
180 |
168 171 179
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
181 |
180
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℤ ) |
182 |
181
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℤ ) |
183 |
182 146
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ∈ ℤ ) |
184 |
11 183
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ℤ ) |
185 |
184
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ℝ ) |
186 |
185
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
187 |
182
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) |
188 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
189 |
147 187 188
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
190 |
189 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ≤ 𝑁 ) |
191 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
192 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑗 ) |
193 |
192
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝑗 ) |
194 |
148 186 142 191 193
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ≤ 𝑗 ) |
195 |
143 148 142 149 194
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < 𝑗 ) |
196 |
195
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ≠ 0 ) |
197 |
142 196
|
rereccld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / 𝑗 ) ∈ ℝ ) |
198 |
142 195
|
recgt0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < ( 1 / 𝑗 ) ) |
199 |
197 198
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
200 |
199
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
201 |
12
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) ) |
202 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → 𝜑 ) |
203 |
201 202
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
204 |
203 4
|
syl |
⊢ ( 𝜒 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
205 |
201
|
simplrd |
⊢ ( 𝜒 → 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) |
206 |
204 205
|
ffvelrnd |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
207 |
206
|
recnd |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
208 |
203 114
|
syl |
⊢ ( 𝜒 → 𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ ) |
209 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → 𝑥 ∈ ℝ+ ) |
210 |
201 209
|
syl |
⊢ ( 𝜒 → 𝑥 ∈ ℝ+ ) |
211 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
212 |
146 184 190 211
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
213 |
203 210 212
|
syl2anc |
⊢ ( 𝜒 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
214 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
215 |
213 214
|
syl |
⊢ ( 𝜒 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
216 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
217 |
201 216
|
syl |
⊢ ( 𝜒 → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
218 |
215 217
|
sseldd |
⊢ ( 𝜒 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
219 |
208 218
|
ffvelrnd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
220 |
219
|
recnd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) |
221 |
203 140
|
syl |
⊢ ( 𝜒 → ( lim sup ‘ 𝑆 ) ∈ ℂ ) |
222 |
207 220 221
|
npncand |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) |
223 |
222
|
eqcomd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) |
224 |
223
|
fveq2d |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ) |
225 |
206 219
|
resubcld |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
226 |
203 139
|
syl |
⊢ ( 𝜒 → ( lim sup ‘ 𝑆 ) ∈ ℝ ) |
227 |
219 226
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ∈ ℝ ) |
228 |
225 227
|
readdcld |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℝ ) |
229 |
228
|
recnd |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℂ ) |
230 |
229
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ∈ ℝ ) |
231 |
225
|
recnd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
232 |
231
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
233 |
227
|
recnd |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ∈ ℂ ) |
234 |
233
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℝ ) |
235 |
232 234
|
readdcld |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ∈ ℝ ) |
236 |
210
|
rpred |
⊢ ( 𝜒 → 𝑥 ∈ ℝ ) |
237 |
231 233
|
abstrid |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ) |
238 |
236
|
rehalfcld |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ∈ ℝ ) |
239 |
207 220
|
abssubd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
240 |
203 218 119
|
syl2anc |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) |
241 |
240
|
fvoveq1d |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
242 |
203 218 113
|
syl2anc |
⊢ ( 𝜒 → ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ∈ ℝ ) |
243 |
242 206
|
resubcld |
⊢ ( 𝜒 → ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
244 |
243
|
recnd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
245 |
244
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
246 |
203 167
|
syl |
⊢ ( 𝜒 → 𝑌 ∈ ℝ ) |
247 |
203 218 65
|
syl2anc |
⊢ ( 𝜒 → ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ℝ ) |
248 |
154 205
|
sselid |
⊢ ( 𝜒 → 𝑧 ∈ ℝ ) |
249 |
247 248
|
resubcld |
⊢ ( 𝜒 → ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ∈ ℝ ) |
250 |
246 249
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ) ∈ ℝ ) |
251 |
203 1
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℝ ) |
252 |
203 2
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℝ ) |
253 |
203 5
|
syl |
⊢ ( 𝜒 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
254 |
165
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
255 |
7
|
breq2i |
⊢ ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
256 |
255
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
257 |
254 256
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
258 |
203 257
|
syl |
⊢ ( 𝜒 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
259 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑥 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
260 |
259
|
breq1d |
⊢ ( 𝑤 = 𝑥 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) ) |
261 |
260
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
262 |
258 261
|
sylibr |
⊢ ( 𝜒 → ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ) |
263 |
248
|
rexrd |
⊢ ( 𝜒 → 𝑧 ∈ ℝ* ) |
264 |
203 37
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℝ* ) |
265 |
248 251
|
resubcld |
⊢ ( 𝜒 → ( 𝑧 − 𝐴 ) ∈ ℝ ) |
266 |
265
|
recnd |
⊢ ( 𝜒 → ( 𝑧 − 𝐴 ) ∈ ℂ ) |
267 |
266
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( 𝑧 − 𝐴 ) ) ∈ ℝ ) |
268 |
15 218
|
sselid |
⊢ ( 𝜒 → 𝑗 ∈ ℝ ) |
269 |
203 218 63
|
syl2anc |
⊢ ( 𝜒 → 𝑗 ≠ 0 ) |
270 |
268 269
|
rereccld |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℝ ) |
271 |
265
|
leabsd |
⊢ ( 𝜒 → ( 𝑧 − 𝐴 ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
272 |
201
|
simprd |
⊢ ( 𝜒 → ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) |
273 |
265 267 270 271 272
|
lelttrd |
⊢ ( 𝜒 → ( 𝑧 − 𝐴 ) < ( 1 / 𝑗 ) ) |
274 |
248 251 270
|
ltsubadd2d |
⊢ ( 𝜒 → ( ( 𝑧 − 𝐴 ) < ( 1 / 𝑗 ) ↔ 𝑧 < ( 𝐴 + ( 1 / 𝑗 ) ) ) ) |
275 |
273 274
|
mpbid |
⊢ ( 𝜒 → 𝑧 < ( 𝐴 + ( 1 / 𝑗 ) ) ) |
276 |
203 218 111
|
syl2anc |
⊢ ( 𝜒 → ( 𝐴 + ( 1 / 𝑗 ) ) < 𝐵 ) |
277 |
263 264 247 275 276
|
eliood |
⊢ ( 𝜒 → ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ( 𝑧 (,) 𝐵 ) ) |
278 |
251 252 204 253 246 262 205 277
|
dvbdfbdioolem1 |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( 𝑌 · ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( 𝑌 · ( 𝐵 − 𝐴 ) ) ) ) |
279 |
278
|
simpld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( 𝑌 · ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ) ) |
280 |
203 218 64
|
syl2anc |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℝ ) |
281 |
246 280
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
282 |
159 151
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℝ ) |
283 |
282
|
recnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
284 |
283
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
285 |
283
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ) |
286 |
|
2fveq3 |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ) |
287 |
7
|
eqcomi |
⊢ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = 𝑌 |
288 |
287
|
a1i |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = 𝑌 ) |
289 |
286 288
|
breq12d |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) ) |
290 |
289
|
rspcva |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) |
291 |
151 254 290
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) |
292 |
22 284 167 285 291
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑌 ) |
293 |
203 292
|
syl |
⊢ ( 𝜒 → 0 ≤ 𝑌 ) |
294 |
203 35
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℝ* ) |
295 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑧 ) |
296 |
294 264 205 295
|
syl3anc |
⊢ ( 𝜒 → 𝐴 < 𝑧 ) |
297 |
251 248 247 296
|
ltsub2dd |
⊢ ( 𝜒 → ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) < ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝐴 ) ) |
298 |
203 105
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℂ ) |
299 |
280
|
recnd |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℂ ) |
300 |
298 299
|
pncan2d |
⊢ ( 𝜒 → ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝐴 ) = ( 1 / 𝑗 ) ) |
301 |
297 300
|
breqtrd |
⊢ ( 𝜒 → ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) < ( 1 / 𝑗 ) ) |
302 |
249 270 301
|
ltled |
⊢ ( 𝜒 → ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ≤ ( 1 / 𝑗 ) ) |
303 |
249 270 246 293 302
|
lemul2ad |
⊢ ( 𝜒 → ( 𝑌 · ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ) ≤ ( 𝑌 · ( 1 / 𝑗 ) ) ) |
304 |
281
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
305 |
238
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑥 / 2 ) ∈ ℝ ) |
306 |
|
oveq1 |
⊢ ( 𝑌 = 0 → ( 𝑌 · ( 1 / 𝑗 ) ) = ( 0 · ( 1 / 𝑗 ) ) ) |
307 |
299
|
mul02d |
⊢ ( 𝜒 → ( 0 · ( 1 / 𝑗 ) ) = 0 ) |
308 |
306 307
|
sylan9eqr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) = 0 ) |
309 |
210
|
rphalfcld |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ∈ ℝ+ ) |
310 |
309
|
rpgt0d |
⊢ ( 𝜒 → 0 < ( 𝑥 / 2 ) ) |
311 |
310
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → 0 < ( 𝑥 / 2 ) ) |
312 |
308 311
|
eqbrtrd |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) < ( 𝑥 / 2 ) ) |
313 |
304 305 312
|
ltled |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
314 |
246
|
adantr |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 𝑌 ∈ ℝ ) |
315 |
293
|
adantr |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 0 ≤ 𝑌 ) |
316 |
|
neqne |
⊢ ( ¬ 𝑌 = 0 → 𝑌 ≠ 0 ) |
317 |
316
|
adantl |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 𝑌 ≠ 0 ) |
318 |
314 315 317
|
ne0gt0d |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 0 < 𝑌 ) |
319 |
281
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
320 |
15 213
|
sselid |
⊢ ( 𝜒 → 𝑁 ∈ ℝ ) |
321 |
|
0red |
⊢ ( 𝜒 → 0 ∈ ℝ ) |
322 |
203 210 147
|
syl2anc |
⊢ ( 𝜒 → 𝑀 ∈ ℝ ) |
323 |
203 74
|
syl |
⊢ ( 𝜒 → 0 < 𝑀 ) |
324 |
203 210 190
|
syl2anc |
⊢ ( 𝜒 → 𝑀 ≤ 𝑁 ) |
325 |
321 322 320 323 324
|
ltletrd |
⊢ ( 𝜒 → 0 < 𝑁 ) |
326 |
325
|
gt0ne0d |
⊢ ( 𝜒 → 𝑁 ≠ 0 ) |
327 |
320 326
|
rereccld |
⊢ ( 𝜒 → ( 1 / 𝑁 ) ∈ ℝ ) |
328 |
246 327
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑁 ) ) ∈ ℝ ) |
329 |
328
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ∈ ℝ ) |
330 |
238
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ∈ ℝ ) |
331 |
280
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑗 ) ∈ ℝ ) |
332 |
327
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
333 |
246
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ∈ ℝ ) |
334 |
293
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 ≤ 𝑌 ) |
335 |
320 325
|
elrpd |
⊢ ( 𝜒 → 𝑁 ∈ ℝ+ ) |
336 |
203 218 66
|
syl2anc |
⊢ ( 𝜒 → 𝑗 ∈ ℝ+ ) |
337 |
|
1red |
⊢ ( 𝜒 → 1 ∈ ℝ ) |
338 |
83
|
a1i |
⊢ ( 𝜒 → 0 ≤ 1 ) |
339 |
217 192
|
syl |
⊢ ( 𝜒 → 𝑁 ≤ 𝑗 ) |
340 |
335 336 337 338 339
|
lediv2ad |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ≤ ( 1 / 𝑁 ) ) |
341 |
340
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑗 ) ≤ ( 1 / 𝑁 ) ) |
342 |
331 332 333 334 341
|
lemul2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑌 · ( 1 / 𝑁 ) ) ) |
343 |
236
|
recnd |
⊢ ( 𝜒 → 𝑥 ∈ ℂ ) |
344 |
|
2cnd |
⊢ ( 𝜒 → 2 ∈ ℂ ) |
345 |
210
|
rpne0d |
⊢ ( 𝜒 → 𝑥 ≠ 0 ) |
346 |
177
|
a1i |
⊢ ( 𝜒 → 2 ≠ 0 ) |
347 |
343 344 345 346
|
divne0d |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ≠ 0 ) |
348 |
246 238 347
|
redivcld |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
349 |
348
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
350 |
|
simpr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < 𝑌 ) |
351 |
310
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < ( 𝑥 / 2 ) ) |
352 |
333 330 350 351
|
divgt0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < ( 𝑌 / ( 𝑥 / 2 ) ) ) |
353 |
349 352
|
elrpd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ+ ) |
354 |
353
|
rprecred |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℝ ) |
355 |
335
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑁 ∈ ℝ+ ) |
356 |
|
1red |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 1 ∈ ℝ ) |
357 |
83
|
a1i |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 ≤ 1 ) |
358 |
348
|
flcld |
⊢ ( 𝜒 → ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℤ ) |
359 |
358
|
peano2zd |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℤ ) |
360 |
359
|
zred |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) |
361 |
203 145
|
syl |
⊢ ( 𝜒 → 𝑀 ∈ ℤ ) |
362 |
359 361
|
ifcld |
⊢ ( 𝜒 → if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ∈ ℤ ) |
363 |
11 362
|
eqeltrid |
⊢ ( 𝜒 → 𝑁 ∈ ℤ ) |
364 |
363
|
zred |
⊢ ( 𝜒 → 𝑁 ∈ ℝ ) |
365 |
|
flltp1 |
⊢ ( ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ → ( 𝑌 / ( 𝑥 / 2 ) ) < ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ) |
366 |
348 365
|
syl |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) < ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ) |
367 |
203 69
|
syl |
⊢ ( 𝜒 → 𝑀 ∈ ℝ ) |
368 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
369 |
367 360 368
|
syl2anc |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
370 |
369 11
|
breqtrrdi |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ 𝑁 ) |
371 |
348 360 364 366 370
|
ltletrd |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) < 𝑁 ) |
372 |
348 320 371
|
ltled |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) ≤ 𝑁 ) |
373 |
372
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ≤ 𝑁 ) |
374 |
353 355 356 357 373
|
lediv2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑁 ) ≤ ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) |
375 |
332 354 333 334 374
|
lemul2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ≤ ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) ) |
376 |
333
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ∈ ℂ ) |
377 |
349
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℂ ) |
378 |
352
|
gt0ne0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ≠ 0 ) |
379 |
376 377 378
|
divrecd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑌 / ( 𝑥 / 2 ) ) ) = ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) ) |
380 |
330
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ∈ ℂ ) |
381 |
350
|
gt0ne0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ≠ 0 ) |
382 |
347
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ≠ 0 ) |
383 |
376 380 381 382
|
ddcand |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑌 / ( 𝑥 / 2 ) ) ) = ( 𝑥 / 2 ) ) |
384 |
379 383
|
eqtr3d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) = ( 𝑥 / 2 ) ) |
385 |
375 384
|
breqtrd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ≤ ( 𝑥 / 2 ) ) |
386 |
319 329 330 342 385
|
letrd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
387 |
318 386
|
syldan |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
388 |
313 387
|
pm2.61dan |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
389 |
250 281 238 303 388
|
letrd |
⊢ ( 𝜒 → ( 𝑌 · ( ( 𝐴 + ( 1 / 𝑗 ) ) − 𝑧 ) ) ≤ ( 𝑥 / 2 ) ) |
390 |
245 250 238 279 389
|
letrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) − ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( 𝑥 / 2 ) ) |
391 |
241 390
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑧 ) ) ) ≤ ( 𝑥 / 2 ) ) |
392 |
239 391
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) ≤ ( 𝑥 / 2 ) ) |
393 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
394 |
201 393
|
syl |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
395 |
232 234 238 238 392 394
|
leltaddd |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) ) |
396 |
343
|
2halvesd |
⊢ ( 𝜒 → ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) = 𝑥 ) |
397 |
395 396
|
breqtrd |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < 𝑥 ) |
398 |
230 235 236 237 397
|
lelttrd |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < 𝑥 ) |
399 |
224 398
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
400 |
12 399
|
sylbir |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
401 |
400
|
adantrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
402 |
401
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
403 |
402
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
404 |
|
brimralrspcev |
⊢ ( ( ( 1 / 𝑗 ) ∈ ℝ+ ∧ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
405 |
200 403 404
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
406 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → 𝑏 ≤ 𝑁 ) |
407 |
406
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑁 ) |
408 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
409 |
184 408
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
410 |
409
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
411 |
407 410
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
412 |
411
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
413 |
|
iffalse |
⊢ ( ¬ 𝑏 ≤ 𝑁 → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑏 ) |
414 |
413
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑏 ) |
415 |
184
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
416 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ℤ ) |
417 |
415
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
418 |
416
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ℝ ) |
419 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → ¬ 𝑏 ≤ 𝑁 ) |
420 |
417 418
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → ( 𝑁 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑁 ) ) |
421 |
419 420
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 < 𝑏 ) |
422 |
417 418 421
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ≤ 𝑏 ) |
423 |
|
eluz2 |
⊢ ( 𝑏 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ≤ 𝑏 ) ) |
424 |
415 416 422 423
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
425 |
414 424
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
426 |
412 425
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
427 |
426
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
428 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
429 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
430 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
431 |
430 429
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ℤ ) |
432 |
429
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℝ ) |
433 |
430
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
434 |
|
max1 |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) |
435 |
432 433 434
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) |
436 |
|
eluz2 |
⊢ ( if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ↔ ( 𝑏 ∈ ℤ ∧ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ℤ ∧ 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
437 |
429 431 435 436
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) |
438 |
437
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) |
439 |
|
fveq2 |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
440 |
439
|
eleq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ↔ ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ) ) |
441 |
439
|
fvoveq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) ) |
442 |
441
|
breq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
443 |
440 442
|
anbi12d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
444 |
443
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) → ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
445 |
428 438 444
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
446 |
445
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
447 |
|
fveq2 |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
448 |
447
|
fvoveq1d |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) ) |
449 |
448
|
breq1d |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
450 |
449
|
rspcev |
⊢ ( ( if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
451 |
427 446 450
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
452 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
453 |
452
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
454 |
4 453
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
455 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
456 |
453 454 155 5 455
|
syl31anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
457 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
458 |
453 456 457
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
459 |
4 458
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
460 |
112 10
|
fmptd |
⊢ ( 𝜑 → 𝑅 : ( ℤ≥ ‘ 𝑀 ) ⟶ ( 𝐴 (,) 𝐵 ) ) |
461 |
|
eqid |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) |
462 |
|
climrel |
⊢ Rel ⇝ |
463 |
462
|
a1i |
⊢ ( 𝜑 → Rel ⇝ ) |
464 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V |
465 |
464
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ∈ V |
466 |
465
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ∈ V ) |
467 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ) |
468 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑚 ) → 𝐴 = 𝐴 ) |
469 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
470 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
471 |
467 468 469 470
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ‘ 𝑚 ) = 𝐴 ) |
472 |
31 145 466 105 471
|
climconst |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ⇝ 𝐴 ) |
473 |
464
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 + ( 1 / 𝑗 ) ) ) ∈ V |
474 |
10 473
|
eqeltri |
⊢ 𝑅 ∈ V |
475 |
474
|
a1i |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
476 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
477 |
|
elnnnn0b |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℕ0 ∧ 0 < 𝑀 ) ) |
478 |
29 74 477
|
sylanbrc |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
479 |
|
divcnvg |
⊢ ( ( 1 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ⇝ 0 ) |
480 |
476 478 479
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ⇝ 0 ) |
481 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ) |
482 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑖 ) → 𝐴 = 𝐴 ) |
483 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
484 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
485 |
481 482 483 484
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ‘ 𝑖 ) = 𝐴 ) |
486 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
487 |
485 486
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
488 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ) |
489 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 1 / 𝑗 ) = ( 1 / 𝑖 ) ) |
490 |
489
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑖 ) → ( 1 / 𝑗 ) = ( 1 / 𝑖 ) ) |
491 |
15 483
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℝ ) |
492 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
493 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
494 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑀 ) |
495 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑖 ) |
496 |
495
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑖 ) |
497 |
492 493 491 494 496
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑖 ) |
498 |
497
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ≠ 0 ) |
499 |
491 498
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
500 |
488 490 483 499
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) = ( 1 / 𝑖 ) ) |
501 |
491
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℂ ) |
502 |
501 498
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑖 ) ∈ ℂ ) |
503 |
500 502
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ∈ ℂ ) |
504 |
489
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝐴 + ( 1 / 𝑗 ) ) = ( 𝐴 + ( 1 / 𝑖 ) ) ) |
505 |
484 499
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑖 ) ) ∈ ℝ ) |
506 |
10 504 483 505
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑖 ) = ( 𝐴 + ( 1 / 𝑖 ) ) ) |
507 |
485 500
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ‘ 𝑖 ) + ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ) = ( 𝐴 + ( 1 / 𝑖 ) ) ) |
508 |
506 507
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑖 ) = ( ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐴 ) ‘ 𝑖 ) + ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ) ) |
509 |
31 145 472 475 480 487 503 508
|
climadd |
⊢ ( 𝜑 → 𝑅 ⇝ ( 𝐴 + 0 ) ) |
510 |
105
|
addid1d |
⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
511 |
509 510
|
breqtrd |
⊢ ( 𝜑 → 𝑅 ⇝ 𝐴 ) |
512 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ 𝑅 ⇝ 𝐴 ) → 𝑅 ∈ dom ⇝ ) |
513 |
463 511 512
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ dom ⇝ ) |
514 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑘 ) ) |
515 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑅 ‘ 𝑙 ) = ( 𝑅 ‘ 𝑘 ) ) |
516 |
515
|
oveq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) = ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) |
517 |
516
|
fveq2d |
⊢ ( 𝑙 = 𝑘 → ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) ) |
518 |
517
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
519 |
514 518
|
raleqbidv |
⊢ ( 𝑙 = 𝑘 → ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
520 |
519
|
cbvrabv |
⊢ { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
521 |
|
fveq2 |
⊢ ( ℎ = 𝑖 → ( 𝑅 ‘ ℎ ) = ( 𝑅 ‘ 𝑖 ) ) |
522 |
521
|
fvoveq1d |
⊢ ( ℎ = 𝑖 → ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) ) |
523 |
522
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
524 |
523
|
cbvralvw |
⊢ ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) |
525 |
524
|
rgenw |
⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) |
526 |
|
rabbi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ↔ { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } ) |
527 |
525 526
|
mpbi |
⊢ { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
528 |
520 527
|
eqtri |
⊢ { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
529 |
528
|
infeq1i |
⊢ inf ( { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } , ℝ , < ) = inf ( { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } , ℝ , < ) |
530 |
1 2 3 459 5 6 30 460 461 513 529
|
ioodvbdlimc1lem1 |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ⇝ ( lim sup ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
531 |
10
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐴 + ( 1 / 𝑗 ) ) ∈ ℝ ) → ( 𝑅 ‘ 𝑗 ) = ( 𝐴 + ( 1 / 𝑗 ) ) ) |
532 |
117 65 531
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑗 ) = ( 𝐴 + ( 1 / 𝑗 ) ) ) |
533 |
532
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 + ( 1 / 𝑗 ) ) = ( 𝑅 ‘ 𝑗 ) ) |
534 |
533
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) |
535 |
534
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) |
536 |
9 535
|
syl5eq |
⊢ ( 𝜑 → 𝑆 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) |
537 |
536
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) = ( lim sup ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
538 |
530 536 537
|
3brtr4d |
⊢ ( 𝜑 → 𝑆 ⇝ ( lim sup ‘ 𝑆 ) ) |
539 |
464
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐴 + ( 1 / 𝑗 ) ) ) ) ∈ V |
540 |
9 539
|
eqeltri |
⊢ 𝑆 ∈ V |
541 |
540
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
542 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℤ ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑐 ) ) |
543 |
541 542
|
clim |
⊢ ( 𝜑 → ( 𝑆 ⇝ ( lim sup ‘ 𝑆 ) ↔ ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) ) ) |
544 |
538 543
|
mpbid |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) ) |
545 |
544
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) |
546 |
545
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) |
547 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
548 |
547
|
rphalfcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
549 |
|
breq2 |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ↔ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
550 |
549
|
anbi2d |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ↔ ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
551 |
550
|
rexralbidv |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ↔ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
552 |
551
|
rspccva |
⊢ ( ( ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ∧ ( 𝑥 / 2 ) ∈ ℝ+ ) → ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
553 |
546 548 552
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
554 |
451 553
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
555 |
405 554
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
556 |
555
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
557 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
558 |
557
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
559 |
454 558 105
|
ellimc3 |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝑆 ) ∈ ( 𝐹 limℂ 𝐴 ) ↔ ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐴 ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) ) ) |
560 |
140 556 559
|
mpbir2and |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ( 𝐹 limℂ 𝐴 ) ) |