Step |
Hyp |
Ref |
Expression |
1 |
|
ioodvbdlimc2lem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ioodvbdlimc2lem.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ioodvbdlimc2lem.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
ioodvbdlimc2lem.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
5 |
|
ioodvbdlimc2lem.dmdv |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
6 |
|
ioodvbdlimc2lem.dvbd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑦 ) |
7 |
|
ioodvbdlimc2lem.y |
⊢ 𝑌 = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
8 |
|
ioodvbdlimc2lem.m |
⊢ 𝑀 = ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) |
9 |
|
ioodvbdlimc2lem.s |
⊢ 𝑆 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
10 |
|
ioodvbdlimc2lem.r |
⊢ 𝑅 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐵 − ( 1 / 𝑗 ) ) ) |
11 |
|
ioodvbdlimc2lem.n |
⊢ 𝑁 = if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) |
12 |
|
ioodvbdlimc2lem.ch |
⊢ ( 𝜒 ↔ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) |
13 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
14 |
|
zssre |
⊢ ℤ ⊆ ℝ |
15 |
13 14
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ ) |
17 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
18 |
1 2
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
19 |
3 18
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
20 |
19
|
gt0ne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≠ 0 ) |
21 |
17 20
|
rereccld |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
22 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
23 |
17 19
|
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / ( 𝐵 − 𝐴 ) ) ) |
24 |
22 21 23
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ) |
25 |
|
flge0nn0 |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ) → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 ) |
26 |
21 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 ) |
27 |
|
peano2nn0 |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
29 |
8 28
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
30 |
29
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
31 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
32 |
31
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( ( ℤ≥ ‘ 𝑀 ) , ℝ* , < ) = +∞ ) |
33 |
30 32
|
syl |
⊢ ( 𝜑 → sup ( ( ℤ≥ ‘ 𝑀 ) , ℝ* , < ) = +∞ ) |
34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
35 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
37 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
40 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℝ ) |
42 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
43 |
|
0red |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 0 ∈ ℝ ) |
44 |
|
1red |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 1 ∈ ℝ ) |
45 |
43 44
|
readdcld |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 + 1 ) ∈ ℝ ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ∈ ℝ ) |
47 |
43
|
ltp1d |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 0 < ( 0 + 1 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < ( 0 + 1 ) ) |
49 |
|
eluzel2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
50 |
49
|
zred |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
52 |
21
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℤ ) |
53 |
52
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
54 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
55 |
26
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ) |
56 |
22 53 54 55
|
leadd1dd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
57 |
56 8
|
breqtrrdi |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ 𝑀 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ≤ 𝑀 ) |
59 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑗 ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑗 ) |
61 |
46 51 41 58 60
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ≤ 𝑗 ) |
62 |
42 46 41 48 61
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑗 ) |
63 |
62
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ≠ 0 ) |
64 |
41 63
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ∈ ℝ ) |
65 |
39 64
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ ) |
66 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
67 |
29
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
68 |
22 54
|
readdcld |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℝ ) |
69 |
53 54
|
readdcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
70 |
22
|
ltp1d |
⊢ ( 𝜑 → 0 < ( 0 + 1 ) ) |
71 |
22 68 69 70 56
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
72 |
71 8
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑀 ) |
73 |
72
|
gt0ne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
74 |
67 73
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑀 ) ∈ ℝ ) |
76 |
39 75
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑀 ) ) ∈ ℝ ) |
77 |
8
|
eqcomi |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) = 𝑀 |
78 |
77
|
oveq2i |
⊢ ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) = ( 1 / 𝑀 ) |
79 |
78 74
|
eqeltrid |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ∈ ℝ ) |
80 |
21 23
|
elrpd |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ+ ) |
81 |
69 71
|
elrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℝ+ ) |
82 |
|
1rp |
⊢ 1 ∈ ℝ+ |
83 |
82
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
84 |
|
fllelt |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ∧ ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
85 |
21 84
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ∧ ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
86 |
85
|
simprd |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
87 |
80 81 83 86
|
ltdiv2dd |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) < ( 1 / ( 1 / ( 𝐵 − 𝐴 ) ) ) ) |
88 |
17
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
89 |
88 20
|
recrecd |
⊢ ( 𝜑 → ( 1 / ( 1 / ( 𝐵 − 𝐴 ) ) ) = ( 𝐵 − 𝐴 ) ) |
90 |
87 89
|
breqtrd |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) < ( 𝐵 − 𝐴 ) ) |
91 |
79 17 2 90
|
ltsub2dd |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 − 𝐴 ) ) < ( 𝐵 − ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) ) |
92 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
93 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
94 |
92 93
|
nncand |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 − 𝐴 ) ) = 𝐴 ) |
95 |
78
|
oveq2i |
⊢ ( 𝐵 − ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) = ( 𝐵 − ( 1 / 𝑀 ) ) |
96 |
95
|
a1i |
⊢ ( 𝜑 → ( 𝐵 − ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) = ( 𝐵 − ( 1 / 𝑀 ) ) ) |
97 |
91 94 96
|
3brtr3d |
⊢ ( 𝜑 → 𝐴 < ( 𝐵 − ( 1 / 𝑀 ) ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 < ( 𝐵 − ( 1 / 𝑀 ) ) ) |
99 |
67 72
|
elrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
101 |
41 62
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℝ+ ) |
102 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℝ ) |
103 |
|
0le1 |
⊢ 0 ≤ 1 |
104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ≤ 1 ) |
105 |
100 101 102 104 60
|
lediv2ad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ≤ ( 1 / 𝑀 ) ) |
106 |
64 75 39 105
|
lesub2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑀 ) ) ≤ ( 𝐵 − ( 1 / 𝑗 ) ) ) |
107 |
66 76 65 98 106
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 < ( 𝐵 − ( 1 / 𝑗 ) ) ) |
108 |
101
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
109 |
39 108
|
ltsubrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) < 𝐵 ) |
110 |
36 38 65 107 109
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
111 |
34 110
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ ℝ ) |
112 |
111 9
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ ) |
113 |
1 2 3 4 5 6
|
dvbdfbdioo |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
114 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → 𝑀 ∈ ℝ ) |
115 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
116 |
9
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ ℝ ) → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
117 |
115 111 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
118 |
117
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
119 |
118
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
120 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
121 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
122 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝐵 − ( 1 / 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
123 |
122
|
breq1d |
⊢ ( 𝑥 = ( 𝐵 − ( 1 / 𝑗 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) ) |
124 |
123
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ∧ ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) |
125 |
120 121 124
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) |
126 |
119 125
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) |
127 |
126
|
a1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
128 |
127
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
129 |
|
breq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑗 ↔ 𝑀 ≤ 𝑗 ) ) |
130 |
129
|
imbi1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ↔ ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
131 |
130
|
ralbidv |
⊢ ( 𝑘 = 𝑀 → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
132 |
131
|
rspcev |
⊢ ( ( 𝑀 ∈ ℝ ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
133 |
114 128 132
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
134 |
133
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
135 |
134
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
136 |
113 135
|
mpd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
137 |
16 33 112 136
|
limsupre |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ℝ ) |
138 |
137
|
recnd |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ℂ ) |
139 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ ℝ ) |
140 |
139
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ ) |
141 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ∈ ℝ ) |
142 |
52
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℤ ) |
143 |
8 142
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
145 |
144
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
146 |
145
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
147 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < 𝑀 ) |
148 |
|
ioomidp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
149 |
1 2 3 148
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
150 |
|
ne0i |
⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
151 |
149 150
|
syl |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
152 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
153 |
152
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
154 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
155 |
4 153 154
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
156 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
157 |
155 156
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
158 |
157
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
159 |
158
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
160 |
159
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
161 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
162 |
|
eqid |
⊢ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
163 |
151 160 6 161 162
|
suprnmpt |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) ) |
164 |
163
|
simpld |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ∈ ℝ ) |
165 |
7 164
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑌 ∈ ℝ ) |
167 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
168 |
167
|
rehalfcld |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ ) |
169 |
168
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ ) |
170 |
167
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
171 |
170
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
172 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℂ ) |
173 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
174 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
175 |
|
2ne0 |
⊢ 2 ≠ 0 |
176 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ≠ 0 ) |
177 |
171 172 174 176
|
divne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ≠ 0 ) |
178 |
166 169 177
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
179 |
178
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℤ ) |
180 |
179
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℤ ) |
181 |
180 144
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ∈ ℤ ) |
182 |
11 181
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ℤ ) |
183 |
182
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ℝ ) |
184 |
183
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
185 |
180
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) |
186 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
187 |
145 185 186
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
188 |
187 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ≤ 𝑁 ) |
189 |
188
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
190 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑗 ) |
191 |
190
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝑗 ) |
192 |
146 184 140 189 191
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ≤ 𝑗 ) |
193 |
141 146 140 147 192
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < 𝑗 ) |
194 |
193
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ≠ 0 ) |
195 |
140 194
|
rereccld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / 𝑗 ) ∈ ℝ ) |
196 |
140 193
|
recgt0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < ( 1 / 𝑗 ) ) |
197 |
195 196
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
198 |
197
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
199 |
12
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) |
200 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → 𝜑 ) |
201 |
199 200
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
202 |
201 4
|
syl |
⊢ ( 𝜒 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
203 |
199
|
simplrd |
⊢ ( 𝜒 → 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) |
204 |
202 203
|
ffvelrnd |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
205 |
204
|
recnd |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
206 |
201 112
|
syl |
⊢ ( 𝜒 → 𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ ) |
207 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → 𝑥 ∈ ℝ+ ) |
208 |
199 207
|
syl |
⊢ ( 𝜒 → 𝑥 ∈ ℝ+ ) |
209 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
210 |
144 182 188 209
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
211 |
201 208 210
|
syl2anc |
⊢ ( 𝜒 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
212 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
213 |
211 212
|
syl |
⊢ ( 𝜒 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
214 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
215 |
199 214
|
syl |
⊢ ( 𝜒 → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
216 |
213 215
|
sseldd |
⊢ ( 𝜒 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
217 |
206 216
|
ffvelrnd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
218 |
217
|
recnd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) |
219 |
201 138
|
syl |
⊢ ( 𝜒 → ( lim sup ‘ 𝑆 ) ∈ ℂ ) |
220 |
205 218 219
|
npncand |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) |
221 |
220
|
eqcomd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) |
222 |
221
|
fveq2d |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ) |
223 |
204 217
|
resubcld |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
224 |
201 137
|
syl |
⊢ ( 𝜒 → ( lim sup ‘ 𝑆 ) ∈ ℝ ) |
225 |
217 224
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ∈ ℝ ) |
226 |
223 225
|
readdcld |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℝ ) |
227 |
226
|
recnd |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℂ ) |
228 |
227
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ∈ ℝ ) |
229 |
223
|
recnd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
230 |
229
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
231 |
225
|
recnd |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ∈ ℂ ) |
232 |
231
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℝ ) |
233 |
230 232
|
readdcld |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ∈ ℝ ) |
234 |
208
|
rpred |
⊢ ( 𝜒 → 𝑥 ∈ ℝ ) |
235 |
229 231
|
abstrid |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ) |
236 |
234
|
rehalfcld |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ∈ ℝ ) |
237 |
201 216 117
|
syl2anc |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
238 |
237
|
oveq2d |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
239 |
238
|
fveq2d |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ) |
240 |
239 230
|
eqeltrrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ∈ ℝ ) |
241 |
201 165
|
syl |
⊢ ( 𝜒 → 𝑌 ∈ ℝ ) |
242 |
152 203
|
sselid |
⊢ ( 𝜒 → 𝑧 ∈ ℝ ) |
243 |
201 216 65
|
syl2anc |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ ) |
244 |
242 243
|
resubcld |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ ℝ ) |
245 |
241 244
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ∈ ℝ ) |
246 |
201 1
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℝ ) |
247 |
201 2
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℝ ) |
248 |
201 5
|
syl |
⊢ ( 𝜒 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
249 |
163
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
250 |
7
|
breq2i |
⊢ ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
251 |
250
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
252 |
249 251
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
253 |
201 252
|
syl |
⊢ ( 𝜒 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
254 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑥 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
255 |
254
|
breq1d |
⊢ ( 𝑤 = 𝑥 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) ) |
256 |
255
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
257 |
253 256
|
sylibr |
⊢ ( 𝜒 → ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ) |
258 |
201 216 110
|
syl2anc |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
259 |
243
|
rexrd |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ* ) |
260 |
201 37
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℝ* ) |
261 |
15 216
|
sselid |
⊢ ( 𝜒 → 𝑗 ∈ ℝ ) |
262 |
201 216 63
|
syl2anc |
⊢ ( 𝜒 → 𝑗 ≠ 0 ) |
263 |
261 262
|
rereccld |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℝ ) |
264 |
247 242
|
resubcld |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ∈ ℝ ) |
265 |
242 247
|
resubcld |
⊢ ( 𝜒 → ( 𝑧 − 𝐵 ) ∈ ℝ ) |
266 |
265
|
recnd |
⊢ ( 𝜒 → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
267 |
266
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( 𝑧 − 𝐵 ) ) ∈ ℝ ) |
268 |
264
|
leabsd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ≤ ( abs ‘ ( 𝐵 − 𝑧 ) ) ) |
269 |
201 92
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℂ ) |
270 |
242
|
recnd |
⊢ ( 𝜒 → 𝑧 ∈ ℂ ) |
271 |
269 270
|
abssubd |
⊢ ( 𝜒 → ( abs ‘ ( 𝐵 − 𝑧 ) ) = ( abs ‘ ( 𝑧 − 𝐵 ) ) ) |
272 |
268 271
|
breqtrd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ≤ ( abs ‘ ( 𝑧 − 𝐵 ) ) ) |
273 |
199
|
simprd |
⊢ ( 𝜒 → ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) |
274 |
264 267 263 272 273
|
lelttrd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) < ( 1 / 𝑗 ) ) |
275 |
247 242 263 274
|
ltsub23d |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) < 𝑧 ) |
276 |
201 35
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℝ* ) |
277 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 < 𝐵 ) |
278 |
276 260 203 277
|
syl3anc |
⊢ ( 𝜒 → 𝑧 < 𝐵 ) |
279 |
259 260 242 275 278
|
eliood |
⊢ ( 𝜒 → 𝑧 ∈ ( ( 𝐵 − ( 1 / 𝑗 ) ) (,) 𝐵 ) ) |
280 |
246 247 202 248 241 257 258 279
|
dvbdfbdioolem1 |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑌 · ( 𝐵 − 𝐴 ) ) ) ) |
281 |
280
|
simpld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
282 |
201 216 64
|
syl2anc |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℝ ) |
283 |
241 282
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
284 |
157 149
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℝ ) |
285 |
284
|
recnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
286 |
285
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
287 |
285
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ) |
288 |
|
2fveq3 |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ) |
289 |
7
|
eqcomi |
⊢ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = 𝑌 |
290 |
289
|
a1i |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = 𝑌 ) |
291 |
288 290
|
breq12d |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) ) |
292 |
291
|
rspcva |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) |
293 |
149 249 292
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) |
294 |
22 286 165 287 293
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑌 ) |
295 |
201 294
|
syl |
⊢ ( 𝜒 → 0 ≤ 𝑌 ) |
296 |
282
|
recnd |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℂ ) |
297 |
|
sub31 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 1 / 𝑗 ) ∈ ℂ ) → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) = ( ( 1 / 𝑗 ) − ( 𝐵 − 𝑧 ) ) ) |
298 |
270 269 296 297
|
syl3anc |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) = ( ( 1 / 𝑗 ) − ( 𝐵 − 𝑧 ) ) ) |
299 |
242 247
|
posdifd |
⊢ ( 𝜒 → ( 𝑧 < 𝐵 ↔ 0 < ( 𝐵 − 𝑧 ) ) ) |
300 |
278 299
|
mpbid |
⊢ ( 𝜒 → 0 < ( 𝐵 − 𝑧 ) ) |
301 |
264 300
|
elrpd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ∈ ℝ+ ) |
302 |
282 301
|
ltsubrpd |
⊢ ( 𝜒 → ( ( 1 / 𝑗 ) − ( 𝐵 − 𝑧 ) ) < ( 1 / 𝑗 ) ) |
303 |
298 302
|
eqbrtrd |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) < ( 1 / 𝑗 ) ) |
304 |
244 282 303
|
ltled |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ≤ ( 1 / 𝑗 ) ) |
305 |
244 282 241 295 304
|
lemul2ad |
⊢ ( 𝜒 → ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ ( 𝑌 · ( 1 / 𝑗 ) ) ) |
306 |
283
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
307 |
236
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑥 / 2 ) ∈ ℝ ) |
308 |
|
oveq1 |
⊢ ( 𝑌 = 0 → ( 𝑌 · ( 1 / 𝑗 ) ) = ( 0 · ( 1 / 𝑗 ) ) ) |
309 |
296
|
mul02d |
⊢ ( 𝜒 → ( 0 · ( 1 / 𝑗 ) ) = 0 ) |
310 |
308 309
|
sylan9eqr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) = 0 ) |
311 |
208
|
rphalfcld |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ∈ ℝ+ ) |
312 |
311
|
rpgt0d |
⊢ ( 𝜒 → 0 < ( 𝑥 / 2 ) ) |
313 |
312
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → 0 < ( 𝑥 / 2 ) ) |
314 |
310 313
|
eqbrtrd |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) < ( 𝑥 / 2 ) ) |
315 |
306 307 314
|
ltled |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
316 |
241
|
adantr |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 𝑌 ∈ ℝ ) |
317 |
295
|
adantr |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 0 ≤ 𝑌 ) |
318 |
|
neqne |
⊢ ( ¬ 𝑌 = 0 → 𝑌 ≠ 0 ) |
319 |
318
|
adantl |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 𝑌 ≠ 0 ) |
320 |
316 317 319
|
ne0gt0d |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 0 < 𝑌 ) |
321 |
283
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
322 |
15 211
|
sselid |
⊢ ( 𝜒 → 𝑁 ∈ ℝ ) |
323 |
|
0red |
⊢ ( 𝜒 → 0 ∈ ℝ ) |
324 |
201 208 145
|
syl2anc |
⊢ ( 𝜒 → 𝑀 ∈ ℝ ) |
325 |
201 72
|
syl |
⊢ ( 𝜒 → 0 < 𝑀 ) |
326 |
201 208 188
|
syl2anc |
⊢ ( 𝜒 → 𝑀 ≤ 𝑁 ) |
327 |
323 324 322 325 326
|
ltletrd |
⊢ ( 𝜒 → 0 < 𝑁 ) |
328 |
327
|
gt0ne0d |
⊢ ( 𝜒 → 𝑁 ≠ 0 ) |
329 |
322 328
|
rereccld |
⊢ ( 𝜒 → ( 1 / 𝑁 ) ∈ ℝ ) |
330 |
241 329
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑁 ) ) ∈ ℝ ) |
331 |
330
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ∈ ℝ ) |
332 |
236
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ∈ ℝ ) |
333 |
282
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑗 ) ∈ ℝ ) |
334 |
329
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
335 |
241
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ∈ ℝ ) |
336 |
295
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 ≤ 𝑌 ) |
337 |
322 327
|
elrpd |
⊢ ( 𝜒 → 𝑁 ∈ ℝ+ ) |
338 |
201 216 101
|
syl2anc |
⊢ ( 𝜒 → 𝑗 ∈ ℝ+ ) |
339 |
|
1red |
⊢ ( 𝜒 → 1 ∈ ℝ ) |
340 |
103
|
a1i |
⊢ ( 𝜒 → 0 ≤ 1 ) |
341 |
215 190
|
syl |
⊢ ( 𝜒 → 𝑁 ≤ 𝑗 ) |
342 |
337 338 339 340 341
|
lediv2ad |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ≤ ( 1 / 𝑁 ) ) |
343 |
342
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑗 ) ≤ ( 1 / 𝑁 ) ) |
344 |
333 334 335 336 343
|
lemul2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑌 · ( 1 / 𝑁 ) ) ) |
345 |
234
|
recnd |
⊢ ( 𝜒 → 𝑥 ∈ ℂ ) |
346 |
|
2cnd |
⊢ ( 𝜒 → 2 ∈ ℂ ) |
347 |
208
|
rpne0d |
⊢ ( 𝜒 → 𝑥 ≠ 0 ) |
348 |
175
|
a1i |
⊢ ( 𝜒 → 2 ≠ 0 ) |
349 |
345 346 347 348
|
divne0d |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ≠ 0 ) |
350 |
241 236 349
|
redivcld |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
351 |
350
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
352 |
|
simpr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < 𝑌 ) |
353 |
312
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < ( 𝑥 / 2 ) ) |
354 |
335 332 352 353
|
divgt0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < ( 𝑌 / ( 𝑥 / 2 ) ) ) |
355 |
351 354
|
elrpd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ+ ) |
356 |
355
|
rprecred |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℝ ) |
357 |
337
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑁 ∈ ℝ+ ) |
358 |
|
1red |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 1 ∈ ℝ ) |
359 |
103
|
a1i |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 ≤ 1 ) |
360 |
350
|
flcld |
⊢ ( 𝜒 → ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℤ ) |
361 |
360
|
peano2zd |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℤ ) |
362 |
361
|
zred |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) |
363 |
201 143
|
syl |
⊢ ( 𝜒 → 𝑀 ∈ ℤ ) |
364 |
361 363
|
ifcld |
⊢ ( 𝜒 → if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ∈ ℤ ) |
365 |
11 364
|
eqeltrid |
⊢ ( 𝜒 → 𝑁 ∈ ℤ ) |
366 |
365
|
zred |
⊢ ( 𝜒 → 𝑁 ∈ ℝ ) |
367 |
|
flltp1 |
⊢ ( ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ → ( 𝑌 / ( 𝑥 / 2 ) ) < ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ) |
368 |
350 367
|
syl |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) < ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ) |
369 |
201 67
|
syl |
⊢ ( 𝜒 → 𝑀 ∈ ℝ ) |
370 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
371 |
369 362 370
|
syl2anc |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
372 |
371 11
|
breqtrrdi |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ 𝑁 ) |
373 |
350 362 366 368 372
|
ltletrd |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) < 𝑁 ) |
374 |
350 322 373
|
ltled |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) ≤ 𝑁 ) |
375 |
374
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ≤ 𝑁 ) |
376 |
355 357 358 359 375
|
lediv2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑁 ) ≤ ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) |
377 |
334 356 335 336 376
|
lemul2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ≤ ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) ) |
378 |
335
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ∈ ℂ ) |
379 |
351
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℂ ) |
380 |
354
|
gt0ne0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ≠ 0 ) |
381 |
378 379 380
|
divrecd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑌 / ( 𝑥 / 2 ) ) ) = ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) ) |
382 |
332
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ∈ ℂ ) |
383 |
352
|
gt0ne0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ≠ 0 ) |
384 |
349
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ≠ 0 ) |
385 |
378 382 383 384
|
ddcand |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑌 / ( 𝑥 / 2 ) ) ) = ( 𝑥 / 2 ) ) |
386 |
381 385
|
eqtr3d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) = ( 𝑥 / 2 ) ) |
387 |
377 386
|
breqtrd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ≤ ( 𝑥 / 2 ) ) |
388 |
321 331 332 344 387
|
letrd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
389 |
320 388
|
syldan |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
390 |
315 389
|
pm2.61dan |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
391 |
245 283 236 305 390
|
letrd |
⊢ ( 𝜒 → ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ ( 𝑥 / 2 ) ) |
392 |
240 245 236 281 391
|
letrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑥 / 2 ) ) |
393 |
239 392
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) ≤ ( 𝑥 / 2 ) ) |
394 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
395 |
199 394
|
syl |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
396 |
230 232 236 236 393 395
|
leltaddd |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) ) |
397 |
345
|
2halvesd |
⊢ ( 𝜒 → ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) = 𝑥 ) |
398 |
396 397
|
breqtrd |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < 𝑥 ) |
399 |
228 233 234 235 398
|
lelttrd |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < 𝑥 ) |
400 |
222 399
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
401 |
12 400
|
sylbir |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
402 |
401
|
adantrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
403 |
402
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
404 |
403
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
405 |
|
brimralrspcev |
⊢ ( ( ( 1 / 𝑗 ) ∈ ℝ+ ∧ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
406 |
198 404 405
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
407 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → 𝑏 ≤ 𝑁 ) |
408 |
407
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑁 ) |
409 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
410 |
182 409
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
411 |
410
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
412 |
408 411
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
413 |
412
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
414 |
|
iffalse |
⊢ ( ¬ 𝑏 ≤ 𝑁 → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑏 ) |
415 |
414
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑏 ) |
416 |
182
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
417 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ℤ ) |
418 |
416
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
419 |
417
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ℝ ) |
420 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → ¬ 𝑏 ≤ 𝑁 ) |
421 |
418 419
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → ( 𝑁 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑁 ) ) |
422 |
420 421
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 < 𝑏 ) |
423 |
418 419 422
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ≤ 𝑏 ) |
424 |
|
eluz2 |
⊢ ( 𝑏 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ≤ 𝑏 ) ) |
425 |
416 417 423 424
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
426 |
415 425
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
427 |
413 426
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
428 |
427
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
429 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
430 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
431 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
432 |
431 430
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ℤ ) |
433 |
430
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℝ ) |
434 |
431
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
435 |
|
max1 |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) |
436 |
433 434 435
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) |
437 |
|
eluz2 |
⊢ ( if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ↔ ( 𝑏 ∈ ℤ ∧ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ℤ ∧ 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
438 |
430 432 436 437
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) |
439 |
438
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) |
440 |
|
fveq2 |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
441 |
440
|
eleq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ↔ ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ) ) |
442 |
440
|
fvoveq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) ) |
443 |
442
|
breq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
444 |
441 443
|
anbi12d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
445 |
444
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) → ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
446 |
429 439 445
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
447 |
446
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
448 |
|
fveq2 |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
449 |
448
|
fvoveq1d |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) ) |
450 |
449
|
breq1d |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
451 |
450
|
rspcev |
⊢ ( ( if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
452 |
428 447 451
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
453 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
454 |
453
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
455 |
4 454
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
456 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
457 |
454 455 153 5 456
|
syl31anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
458 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
459 |
454 457 458
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
460 |
4 459
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
461 |
110 10
|
fmptd |
⊢ ( 𝜑 → 𝑅 : ( ℤ≥ ‘ 𝑀 ) ⟶ ( 𝐴 (,) 𝐵 ) ) |
462 |
|
eqid |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) |
463 |
|
climrel |
⊢ Rel ⇝ |
464 |
463
|
a1i |
⊢ ( 𝜑 → Rel ⇝ ) |
465 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V |
466 |
465
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ∈ V |
467 |
466
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ∈ V ) |
468 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ) |
469 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑚 ) → 𝐵 = 𝐵 ) |
470 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
471 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
472 |
468 469 470 471
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑚 ) = 𝐵 ) |
473 |
31 30 467 92 472
|
climconst |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ⇝ 𝐵 ) |
474 |
465
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ V |
475 |
10 474
|
eqeltri |
⊢ 𝑅 ∈ V |
476 |
475
|
a1i |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
477 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
478 |
|
elnnnn0b |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℕ0 ∧ 0 < 𝑀 ) ) |
479 |
29 72 478
|
sylanbrc |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
480 |
|
divcnvg |
⊢ ( ( 1 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ⇝ 0 ) |
481 |
477 479 480
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ⇝ 0 ) |
482 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ) |
483 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑖 ) → 𝐵 = 𝐵 ) |
484 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
485 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
486 |
482 483 484 485
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) = 𝐵 ) |
487 |
486 485
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℝ ) |
488 |
487
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
489 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ) |
490 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 1 / 𝑗 ) = ( 1 / 𝑖 ) ) |
491 |
490
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑖 ) → ( 1 / 𝑗 ) = ( 1 / 𝑖 ) ) |
492 |
15 484
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℝ ) |
493 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
494 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
495 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑀 ) |
496 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑖 ) |
497 |
496
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑖 ) |
498 |
493 494 492 495 497
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑖 ) |
499 |
498
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ≠ 0 ) |
500 |
492 499
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
501 |
489 491 484 500
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) = ( 1 / 𝑖 ) ) |
502 |
492
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℂ ) |
503 |
502 499
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑖 ) ∈ ℂ ) |
504 |
501 503
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ∈ ℂ ) |
505 |
490
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝐵 − ( 1 / 𝑗 ) ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
506 |
|
ovex |
⊢ ( 𝐵 − ( 1 / 𝑖 ) ) ∈ V |
507 |
505 10 506
|
fvmpt |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
508 |
507
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑖 ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
509 |
486 501
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) − ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
510 |
508 509
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑖 ) = ( ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) − ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ) ) |
511 |
31 30 473 476 481 488 504 510
|
climsub |
⊢ ( 𝜑 → 𝑅 ⇝ ( 𝐵 − 0 ) ) |
512 |
92
|
subid1d |
⊢ ( 𝜑 → ( 𝐵 − 0 ) = 𝐵 ) |
513 |
511 512
|
breqtrd |
⊢ ( 𝜑 → 𝑅 ⇝ 𝐵 ) |
514 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ 𝑅 ⇝ 𝐵 ) → 𝑅 ∈ dom ⇝ ) |
515 |
464 513 514
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ dom ⇝ ) |
516 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑘 ) ) |
517 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑅 ‘ 𝑙 ) = ( 𝑅 ‘ 𝑘 ) ) |
518 |
517
|
oveq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) = ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) |
519 |
518
|
fveq2d |
⊢ ( 𝑙 = 𝑘 → ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) ) |
520 |
519
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
521 |
516 520
|
raleqbidv |
⊢ ( 𝑙 = 𝑘 → ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
522 |
521
|
cbvrabv |
⊢ { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
523 |
|
fveq2 |
⊢ ( ℎ = 𝑖 → ( 𝑅 ‘ ℎ ) = ( 𝑅 ‘ 𝑖 ) ) |
524 |
523
|
fvoveq1d |
⊢ ( ℎ = 𝑖 → ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) ) |
525 |
524
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
526 |
525
|
cbvralvw |
⊢ ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) |
527 |
526
|
rgenw |
⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) |
528 |
|
rabbi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ↔ { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } ) |
529 |
527 528
|
mpbi |
⊢ { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
530 |
522 529
|
eqtri |
⊢ { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
531 |
530
|
infeq1i |
⊢ inf ( { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } , ℝ , < ) = inf ( { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } , ℝ , < ) |
532 |
1 2 3 460 5 6 30 461 462 515 531
|
ioodvbdlimc1lem1 |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ⇝ ( lim sup ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
533 |
10
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ ) → ( 𝑅 ‘ 𝑗 ) = ( 𝐵 − ( 1 / 𝑗 ) ) ) |
534 |
115 65 533
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑗 ) = ( 𝐵 − ( 1 / 𝑗 ) ) ) |
535 |
534
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) = ( 𝑅 ‘ 𝑗 ) ) |
536 |
535
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) |
537 |
536
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) |
538 |
9 537
|
syl5eq |
⊢ ( 𝜑 → 𝑆 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) |
539 |
538
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) = ( lim sup ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
540 |
532 538 539
|
3brtr4d |
⊢ ( 𝜑 → 𝑆 ⇝ ( lim sup ‘ 𝑆 ) ) |
541 |
465
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ∈ V |
542 |
9 541
|
eqeltri |
⊢ 𝑆 ∈ V |
543 |
542
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
544 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℤ ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑐 ) ) |
545 |
543 544
|
clim |
⊢ ( 𝜑 → ( 𝑆 ⇝ ( lim sup ‘ 𝑆 ) ↔ ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) ) ) |
546 |
540 545
|
mpbid |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) ) |
547 |
546
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) |
548 |
547
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) |
549 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
550 |
549
|
rphalfcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
551 |
|
breq2 |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ↔ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
552 |
551
|
anbi2d |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ↔ ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
553 |
552
|
rexralbidv |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ↔ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
554 |
553
|
rspccva |
⊢ ( ( ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ∧ ( 𝑥 / 2 ) ∈ ℝ+ ) → ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
555 |
548 550 554
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
556 |
452 555
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
557 |
406 556
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
558 |
557
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
559 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
560 |
559
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
561 |
455 560 92
|
ellimc3 |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝑆 ) ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) ) ) |
562 |
138 558 561
|
mpbir2and |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |