Metamath Proof Explorer


Theorem ioof

Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ

Proof

Step Hyp Ref Expression
1 iooval ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 ioossre ( 𝑥 (,) 𝑦 ) ⊆ ℝ
3 ovex ( 𝑥 (,) 𝑦 ) ∈ V
4 3 elpw ( ( 𝑥 (,) 𝑦 ) ∈ 𝒫 ℝ ↔ ( 𝑥 (,) 𝑦 ) ⊆ ℝ )
5 2 4 mpbir ( 𝑥 (,) 𝑦 ) ∈ 𝒫 ℝ
6 1 5 eqeltrrdi ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ )
7 6 rgen2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ
8 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
9 8 fmpo ( ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ↔ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ )
10 7 9 mpbi (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ