Step |
Hyp |
Ref |
Expression |
1 |
|
iooval |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
2 |
|
ioossre |
⊢ ( 𝑥 (,) 𝑦 ) ⊆ ℝ |
3 |
|
ovex |
⊢ ( 𝑥 (,) 𝑦 ) ∈ V |
4 |
3
|
elpw |
⊢ ( ( 𝑥 (,) 𝑦 ) ∈ 𝒫 ℝ ↔ ( 𝑥 (,) 𝑦 ) ⊆ ℝ ) |
5 |
2 4
|
mpbir |
⊢ ( 𝑥 (,) 𝑦 ) ∈ 𝒫 ℝ |
6 |
1 5
|
eqeltrrdi |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ |
8 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
9 |
8
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ↔ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ) |
10 |
7 9
|
mpbi |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |