Metamath Proof Explorer


Theorem ioogtlbd

Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ioogtlbd.1 ( 𝜑𝐴 ∈ ℝ* )
ioogtlbd.2 ( 𝜑𝐵 ∈ ℝ* )
ioogtlbd.3 ( 𝜑𝐶 ∈ ( 𝐴 (,) 𝐵 ) )
Assertion ioogtlbd ( 𝜑𝐴 < 𝐶 )

Proof

Step Hyp Ref Expression
1 ioogtlbd.1 ( 𝜑𝐴 ∈ ℝ* )
2 ioogtlbd.2 ( 𝜑𝐵 ∈ ℝ* )
3 ioogtlbd.3 ( 𝜑𝐶 ∈ ( 𝐴 (,) 𝐵 ) )
4 ioogtlb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝐶 )
5 1 2 3 4 syl3anc ( 𝜑𝐴 < 𝐶 )