Step |
Hyp |
Ref |
Expression |
1 |
|
iooiinioc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
iooiinioc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝐴 ∈ ℝ* ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝐵 ∈ ℝ ) |
5 |
4
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝐵 ∈ ℝ* ) |
6 |
|
1nn |
⊢ 1 ∈ ℕ |
7 |
|
ioossre |
⊢ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ⊆ ℝ |
8 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐵 + ( 1 / 𝑛 ) ) = ( 𝐵 + ( 1 / 1 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ) |
11 |
10
|
sseq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ ↔ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ⊆ ℝ ) ) |
12 |
11
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ⊆ ℝ ) → ∃ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ ) |
13 |
6 7 12
|
mp2an |
⊢ ∃ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ |
14 |
|
iinss |
⊢ ( ∃ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ ) |
15 |
13 14
|
ax-mp |
⊢ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ℝ ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
18 |
16 17
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 ∈ ℝ ) |
19 |
18
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 ∈ ℝ* ) |
20 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
21 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
22 |
21
|
a1i |
⊢ ( 𝜑 → 1 ≠ 0 ) |
23 |
20 20 22
|
redivcld |
⊢ ( 𝜑 → ( 1 / 1 ) ∈ ℝ ) |
24 |
2 23
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 1 / 1 ) ) ∈ ℝ ) |
25 |
24
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 + ( 1 / 1 ) ) ∈ ℝ* ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝐵 + ( 1 / 1 ) ) ∈ ℝ* ) |
27 |
|
id |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
28 |
6
|
a1i |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → 1 ∈ ℕ ) |
29 |
10
|
eleq2d |
⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ) ) |
30 |
27 28 29
|
eliind |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ) |
32 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 1 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 1 ) ) ) ) → 𝐴 < 𝑥 ) |
33 |
3 26 31 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝐴 < 𝑥 ) |
34 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
35 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
36 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) |
37 |
35 36
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) |
38 |
34 37
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
39 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝜑 ) |
40 |
|
iinss2 |
⊢ ( 𝑛 ∈ ℕ → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
42 |
|
simpl |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
43 |
41 42
|
sseldd |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
44 |
43
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
46 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) → 𝑥 ∈ ℝ ) |
47 |
46
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
48 |
47
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
49 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
50 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
52 |
49 51
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
53 |
52
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
54 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
55 |
54
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
56 |
52
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
57 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
58 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
59 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
60 |
55 57 58 59
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
61 |
48 53 60
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
62 |
39 44 45 61
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝑛 ∈ ℕ → 𝑥 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
64 |
38 63
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ∀ 𝑛 ∈ ℕ 𝑥 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) |
65 |
38 19 4
|
xrralrecnnle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝑥 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ 𝑥 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
66 |
64 65
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 ≤ 𝐵 ) |
67 |
3 5 19 33 66
|
eliocd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
68 |
67
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
69 |
|
dfss3 |
⊢ ( ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ( 𝐴 (,] 𝐵 ) ↔ ∀ 𝑥 ∈ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
70 |
68 69
|
sylibr |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ⊆ ( 𝐴 (,] 𝐵 ) ) |
71 |
1
|
xrleidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ≤ 𝐴 ) |
73 |
|
1rp |
⊢ 1 ∈ ℝ+ |
74 |
73
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ+ ) |
75 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
76 |
74 75
|
rpdivcld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
78 |
49 77
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 < ( 𝐵 + ( 1 / 𝑛 ) ) ) |
79 |
|
iocssioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 + ( 1 / 𝑛 ) ) ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐵 < ( 𝐵 + ( 1 / 𝑛 ) ) ) ) → ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
80 |
54 56 72 78 79
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
81 |
80
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
82 |
|
ssiin |
⊢ ( ( 𝐴 (,] 𝐵 ) ⊆ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
83 |
81 82
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
84 |
70 83
|
eqssd |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐴 (,) ( 𝐵 + ( 1 / 𝑛 ) ) ) = ( 𝐴 (,] 𝐵 ) ) |