Metamath Proof Explorer


Theorem iooin

Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooin ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ*𝐷 ∈ ℝ* ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ( if ( 𝐴𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵𝐷 , 𝐵 , 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 xrmaxlt ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ* ) → ( if ( 𝐴𝐶 , 𝐶 , 𝐴 ) < 𝑧 ↔ ( 𝐴 < 𝑧𝐶 < 𝑧 ) ) )
3 xrltmin ( ( 𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ* ) → ( 𝑧 < if ( 𝐵𝐷 , 𝐵 , 𝐷 ) ↔ ( 𝑧 < 𝐵𝑧 < 𝐷 ) ) )
4 1 2 3 ixxin ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ*𝐷 ∈ ℝ* ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ( if ( 𝐴𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵𝐷 , 𝐵 , 𝐷 ) ) )