| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unass | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( ( 𝐴 (,) 𝐵 )  ∪  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) ) | 
						
							| 2 |  | snunioo | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝐵  <  𝐶 )  →  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 3 | 2 | 3expa | ⊢ ( ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐵  <  𝐶 )  →  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 4 | 3 | 3adantl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  𝐵  <  𝐶 )  →  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 5 | 4 | adantrl | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 6 | 5 | uneq2d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,) 𝐵 )  ∪  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) )  =  ( ( 𝐴 (,) 𝐵 )  ∪  ( 𝐵 [,) 𝐶 ) ) ) | 
						
							| 7 |  | df-ioo | ⊢ (,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 8 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 9 |  | xrlenlt | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( 𝐵  ≤  𝑤  ↔  ¬  𝑤  <  𝐵 ) ) | 
						
							| 10 |  | xrlttr | ⊢ ( ( 𝑤  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝑤  <  𝐵  ∧  𝐵  <  𝐶 )  →  𝑤  <  𝐶 ) ) | 
						
							| 11 |  | xrltletr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( ( 𝐴  <  𝐵  ∧  𝐵  ≤  𝑤 )  →  𝐴  <  𝑤 ) ) | 
						
							| 12 | 7 8 9 7 10 11 | ixxun | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,) 𝐵 )  ∪  ( 𝐵 [,) 𝐶 ) )  =  ( 𝐴 (,) 𝐶 ) ) | 
						
							| 13 | 6 12 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,) 𝐵 )  ∪  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) )  =  ( 𝐴 (,) 𝐶 ) ) | 
						
							| 14 | 1 13 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐴 (,) 𝐶 ) ) |