Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
3 | iooval2 | ⊢ ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥 ∧ 𝑥 < +∞ ) } ) | |
4 | 1 2 3 | mp2an | ⊢ ( -∞ (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥 ∧ 𝑥 < +∞ ) } |
5 | rabid2 | ⊢ ( ℝ = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥 ∧ 𝑥 < +∞ ) } ↔ ∀ 𝑥 ∈ ℝ ( -∞ < 𝑥 ∧ 𝑥 < +∞ ) ) | |
6 | mnflt | ⊢ ( 𝑥 ∈ ℝ → -∞ < 𝑥 ) | |
7 | ltpnf | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) | |
8 | 6 7 | jca | ⊢ ( 𝑥 ∈ ℝ → ( -∞ < 𝑥 ∧ 𝑥 < +∞ ) ) |
9 | 5 8 | mprgbir | ⊢ ℝ = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥 ∧ 𝑥 < +∞ ) } |
10 | 4 9 | eqtr4i | ⊢ ( -∞ (,) +∞ ) = ℝ |