Metamath Proof Explorer


Theorem ioomax

Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion ioomax ( -∞ (,) +∞ ) = ℝ

Proof

Step Hyp Ref Expression
1 mnfxr -∞ ∈ ℝ*
2 pnfxr +∞ ∈ ℝ*
3 iooval2 ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥𝑥 < +∞ ) } )
4 1 2 3 mp2an ( -∞ (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥𝑥 < +∞ ) }
5 rabid2 ( ℝ = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥𝑥 < +∞ ) } ↔ ∀ 𝑥 ∈ ℝ ( -∞ < 𝑥𝑥 < +∞ ) )
6 mnflt ( 𝑥 ∈ ℝ → -∞ < 𝑥 )
7 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
8 6 7 jca ( 𝑥 ∈ ℝ → ( -∞ < 𝑥𝑥 < +∞ ) )
9 5 8 mprgbir ℝ = { 𝑥 ∈ ℝ ∣ ( -∞ < 𝑥𝑥 < +∞ ) }
10 4 9 eqtr4i ( -∞ (,) +∞ ) = ℝ