Step |
Hyp |
Ref |
Expression |
1 |
|
snunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
2 |
1
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
3 |
2
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
4 |
|
lbico1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
6 |
5
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
7 |
6
|
snssd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → { 𝐴 } ⊆ ( 𝐴 [,) 𝐵 ) ) |
8 |
|
iccid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
10 |
9
|
ineq1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,] 𝐴 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 } ∩ ( 𝐴 (,) 𝐵 ) ) ) |
11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 ∈ ℝ* ) |
12 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐵 ∈ ℝ* ) |
13 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
14 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
15 |
|
xrltnle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴 ) ) |
16 |
13 14 15
|
ixxdisj |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐴 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
17 |
11 11 12 16
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,] 𝐴 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
18 |
10 17
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( { 𝐴 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
19 |
|
uneqdifeq |
⊢ ( ( { 𝐴 } ⊆ ( 𝐴 [,) 𝐵 ) ∧ ( { 𝐴 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) → ( ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) ) |
20 |
7 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) ) |
21 |
3 20
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) |
22 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
23 |
22
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → -∞ ∈ ℝ* ) |
24 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → -∞ < 𝐴 ) |
25 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 < 𝐵 ) |
26 |
|
xrre2 |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( -∞ < 𝐴 ∧ 𝐴 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
27 |
23 11 12 24 25 26
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
28 |
|
icombl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
29 |
27 12 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
30 |
27
|
snssd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → { 𝐴 } ⊆ ℝ ) |
31 |
|
ovolsn |
⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) |
32 |
27 31
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( vol* ‘ { 𝐴 } ) = 0 ) |
33 |
|
nulmbl |
⊢ ( ( { 𝐴 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 } ) = 0 ) → { 𝐴 } ∈ dom vol ) |
34 |
30 32 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → { 𝐴 } ∈ dom vol ) |
35 |
|
difmbl |
⊢ ( ( ( 𝐴 [,) 𝐵 ) ∈ dom vol ∧ { 𝐴 } ∈ dom vol ) → ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) ∈ dom vol ) |
36 |
29 34 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) ∈ dom vol ) |
37 |
21 36
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
38 |
37
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ < 𝐴 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) ) |
39 |
|
uncom |
⊢ ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) |
40 |
22
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → -∞ ∈ ℝ* ) |
41 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
42 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
43 |
42
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → +∞ ∈ ℝ* ) |
44 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
45 |
|
mnfle |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → -∞ ≤ 𝐴 ) |
47 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
48 |
40 44 41 46 47
|
xrlelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → -∞ < 𝐵 ) |
49 |
|
pnfge |
⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) |
50 |
41 49
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ≤ +∞ ) |
51 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
52 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) |
53 |
|
xrltletr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 < 𝐵 ∧ 𝐵 ≤ +∞ ) → 𝑤 < +∞ ) ) |
54 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < 𝐵 ∧ 𝐵 ≤ 𝑤 ) → -∞ < 𝑤 ) ) |
55 |
14 51 52 14 53 54
|
ixxun |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 𝐵 ∧ 𝐵 ≤ +∞ ) ) → ( ( -∞ (,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
56 |
40 41 43 48 50 55
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( -∞ (,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
57 |
39 56
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ( -∞ (,) +∞ ) ) |
58 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
59 |
57 58
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ℝ ) |
60 |
|
ssun1 |
⊢ ( 𝐵 [,) +∞ ) ⊆ ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) |
61 |
60 59
|
sseqtrid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ℝ ) |
62 |
|
incom |
⊢ ( ( 𝐵 [,) +∞ ) ∩ ( -∞ (,) 𝐵 ) ) = ( ( -∞ (,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) |
63 |
14 51 52
|
ixxdisj |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ (,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
64 |
40 41 43 63
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( -∞ (,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
65 |
62 64
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∩ ( -∞ (,) 𝐵 ) ) = ∅ ) |
66 |
|
uneqdifeq |
⊢ ( ( ( 𝐵 [,) +∞ ) ⊆ ℝ ∧ ( ( 𝐵 [,) +∞ ) ∩ ( -∞ (,) 𝐵 ) ) = ∅ ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ℝ ↔ ( ℝ ∖ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) 𝐵 ) ) ) |
67 |
61 65 66
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ℝ ↔ ( ℝ ∖ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) 𝐵 ) ) ) |
68 |
59 67
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ℝ ∖ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) 𝐵 ) ) |
69 |
|
rembl |
⊢ ℝ ∈ dom vol |
70 |
|
xrleloe |
⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) |
71 |
41 42 70
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) |
72 |
50 71
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) |
73 |
|
xrre2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ) → 𝐵 ∈ ℝ ) |
74 |
73
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
75 |
42 74
|
mp3anl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
76 |
75
|
orim1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) ) |
77 |
72 76
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
78 |
|
icombl1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
79 |
|
oveq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ( +∞ [,) +∞ ) ) |
80 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
81 |
42 80
|
ax-mp |
⊢ +∞ ≤ +∞ |
82 |
|
ico0 |
⊢ ( ( +∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) ) |
83 |
42 42 82
|
mp2an |
⊢ ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) |
84 |
81 83
|
mpbir |
⊢ ( +∞ [,) +∞ ) = ∅ |
85 |
79 84
|
eqtrdi |
⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ∅ ) |
86 |
|
0mbl |
⊢ ∅ ∈ dom vol |
87 |
85 86
|
eqeltrdi |
⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
88 |
78 87
|
jaoi |
⊢ ( ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
89 |
77 88
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
90 |
|
difmbl |
⊢ ( ( ℝ ∈ dom vol ∧ ( 𝐵 [,) +∞ ) ∈ dom vol ) → ( ℝ ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) |
91 |
69 89 90
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ℝ ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) |
92 |
68 91
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ (,) 𝐵 ) ∈ dom vol ) |
93 |
|
oveq1 |
⊢ ( -∞ = 𝐴 → ( -∞ (,) 𝐵 ) = ( 𝐴 (,) 𝐵 ) ) |
94 |
93
|
eleq1d |
⊢ ( -∞ = 𝐴 → ( ( -∞ (,) 𝐵 ) ∈ dom vol ↔ ( 𝐴 (,) 𝐵 ) ∈ dom vol ) ) |
95 |
92 94
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ = 𝐴 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) ) |
96 |
|
xrleloe |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) |
97 |
22 44 96
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) |
98 |
46 97
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) |
99 |
38 95 98
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
100 |
|
ioo0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
101 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
102 |
101
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
103 |
100 102
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ ¬ 𝐴 < 𝐵 ) ) |
104 |
103
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
105 |
104 86
|
eqeltrdi |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
106 |
99 105
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
107 |
|
ndmioo |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
108 |
107 86
|
eqeltrdi |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
109 |
106 108
|
pm2.61i |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |