| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxr | ⊢ ( 𝐴  ∈  ℝ*  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ ) ) | 
						
							| 2 |  | ioossre | ⊢ ( 𝐴 (,) +∞ )  ⊆  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 (,) +∞ )  ⊆  ℝ ) | 
						
							| 4 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  ℝ  →  𝑥  ⊆  ℝ ) | 
						
							| 5 |  | simplrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  →  𝑥  ⊆  ℝ ) | 
						
							| 6 |  | simplrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  →  ( vol* ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  →  𝑦  ∈  ℝ+ ) | 
						
							| 8 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) | 
						
							| 9 | 8 | ovolgelb | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ ) ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) | 
						
							| 10 | 5 6 7 9 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ ) ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝐴 (,) +∞ )  =  ( 𝐴 (,) +∞ ) | 
						
							| 12 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  𝑥  ⊆  ℝ ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  ( vol* ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 16 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑚  ∈  ℕ  ↦  〈 if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑚  ∈  ℕ  ↦  〈 if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) ) | 
						
							| 17 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑚  ∈  ℕ  ↦  〈 ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 ) ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑚  ∈  ℕ  ↦  〈 ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 ) ) ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ ) ) | 
						
							| 19 |  | elovolmlem | ⊢ ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ↔  𝑓 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  𝑓 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 21 |  | simprrl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 22 |  | simprrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 24 |  | eqid | ⊢ ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 25 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  =  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 26 | 25 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴  ↔  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ) ) | 
						
							| 27 | 26 25 | ifbieq2d | ⊢ ( 𝑚  =  𝑛  →  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  =  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 28 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 29 | 27 28 | breq12d | ⊢ ( 𝑚  =  𝑛  →  ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) )  ↔  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 30 | 29 27 28 | ifbieq12d | ⊢ ( 𝑚  =  𝑛  →  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) )  =  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 31 | 30 28 | opeq12d | ⊢ ( 𝑚  =  𝑛  →  〈 if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉  =  〈 if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) | 
						
							| 32 | 31 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  〈 if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 )  =  ( 𝑛  ∈  ℕ  ↦  〈 if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) | 
						
							| 33 | 25 30 | opeq12d | ⊢ ( 𝑚  =  𝑛  →  〈 ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉  =  〈 ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) 〉 ) | 
						
							| 34 | 33 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  〈 ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) ) 〉 )  =  ( 𝑛  ∈  ℕ  ↦  〈 ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ≤  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ,  if ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  ≤  𝐴 ,  𝐴 ,  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) 〉 ) | 
						
							| 35 | 11 12 13 14 15 8 16 17 20 21 22 23 24 32 34 | ioombl1lem4 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  ∧  ( 𝑓  ∈  ( (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↑m  ℕ )  ∧  ( 𝑥  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝑓 ) ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) )  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) | 
						
							| 36 | 10 35 | rexlimddv | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  ∧  𝑦  ∈  ℝ+ )  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ∀ 𝑦  ∈  ℝ+ ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) | 
						
							| 38 |  | inss1 | ⊢ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) )  ⊆  𝑥 | 
						
							| 39 |  | ovolsscl | ⊢ ( ( ( 𝑥  ∩  ( 𝐴 (,) +∞ ) )  ⊆  𝑥  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  ∈  ℝ ) | 
						
							| 40 | 38 39 | mp3an1 | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  ∈  ℝ ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  ∈  ℝ ) | 
						
							| 42 |  | difss | ⊢ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) )  ⊆  𝑥 | 
						
							| 43 |  | ovolsscl | ⊢ ( ( ( 𝑥  ∖  ( 𝐴 (,) +∞ ) )  ⊆  𝑥  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) )  ∈  ℝ ) | 
						
							| 44 | 42 43 | mp3an1 | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) )  ∈  ℝ ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) )  ∈  ℝ ) | 
						
							| 46 | 41 45 | readdcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ∈  ℝ ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ( vol* ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 48 |  | alrple | ⊢ ( ( ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ∈  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  ℝ+ ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) | 
						
							| 49 | 46 47 48 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ( ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  ℝ+ ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( ( vol* ‘ 𝑥 )  +  𝑦 ) ) ) | 
						
							| 50 | 37 49 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 ) ) | 
						
							| 51 | 50 | expr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ⊆  ℝ )  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) | 
						
							| 52 | 4 51 | sylan2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑥  ∈  𝒫  ℝ )  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( 𝐴  ∈  ℝ  →  ∀ 𝑥  ∈  𝒫  ℝ ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) | 
						
							| 54 |  | ismbl2 | ⊢ ( ( 𝐴 (,) +∞ )  ∈  dom  vol  ↔  ( ( 𝐴 (,) +∞ )  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝒫  ℝ ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( ( vol* ‘ ( 𝑥  ∩  ( 𝐴 (,) +∞ ) ) )  +  ( vol* ‘ ( 𝑥  ∖  ( 𝐴 (,) +∞ ) ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) ) | 
						
							| 55 | 3 53 54 | sylanbrc | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝐴  =  +∞  →  ( 𝐴 (,) +∞ )  =  ( +∞ (,) +∞ ) ) | 
						
							| 57 |  | iooid | ⊢ ( +∞ (,) +∞ )  =  ∅ | 
						
							| 58 | 56 57 | eqtrdi | ⊢ ( 𝐴  =  +∞  →  ( 𝐴 (,) +∞ )  =  ∅ ) | 
						
							| 59 |  | 0mbl | ⊢ ∅  ∈  dom  vol | 
						
							| 60 | 58 59 | eqeltrdi | ⊢ ( 𝐴  =  +∞  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) | 
						
							| 61 |  | oveq1 | ⊢ ( 𝐴  =  -∞  →  ( 𝐴 (,) +∞ )  =  ( -∞ (,) +∞ ) ) | 
						
							| 62 |  | ioomax | ⊢ ( -∞ (,) +∞ )  =  ℝ | 
						
							| 63 | 61 62 | eqtrdi | ⊢ ( 𝐴  =  -∞  →  ( 𝐴 (,) +∞ )  =  ℝ ) | 
						
							| 64 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 65 | 63 64 | eqeltrdi | ⊢ ( 𝐴  =  -∞  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) | 
						
							| 66 | 55 60 65 | 3jaoi | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ )  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) | 
						
							| 67 | 1 66 | sylbi | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴 (,) +∞ )  ∈  dom  vol ) |