Step |
Hyp |
Ref |
Expression |
1 |
|
ioombl1.b |
⊢ 𝐵 = ( 𝐴 (,) +∞ ) |
2 |
|
ioombl1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ioombl1.e |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
4 |
|
ioombl1.v |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
5 |
|
ioombl1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
6 |
|
ioombl1.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
7 |
|
ioombl1.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
8 |
|
ioombl1.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
9 |
|
ioombl1.f1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
10 |
|
ioombl1.f2 |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
11 |
|
ioombl1.f3 |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
12 |
|
ioombl1.p |
⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) |
13 |
|
ioombl1.q |
⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) |
14 |
|
ioombl1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
15 |
|
ioombl1.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
17 |
|
ovolfcl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
18 |
9 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
19 |
18
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
20 |
12 19
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
21 |
16 20
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ) |
22 |
18
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
23 |
13 22
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
24 |
|
min2 |
⊢ ( ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑄 ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑄 ) |
26 |
|
df-br |
⊢ ( if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ≤ 𝑄 ↔ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ≤ ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ≤ ) |
28 |
21 23
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ∈ ℝ ) |
29 |
28 23
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ( ℝ × ℝ ) ) |
30 |
27 29
|
elind |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
31 |
30 14
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
32 |
|
max1 |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
33 |
20 16 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ) |
34 |
18
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
35 |
34 12 13
|
3brtr4g |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ≤ 𝑄 ) |
36 |
|
breq2 |
⊢ ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ↔ 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) |
37 |
|
breq2 |
⊢ ( 𝑄 = if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) ) |
38 |
36 37
|
ifboth |
⊢ ( ( 𝑃 ≤ if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ∧ 𝑃 ≤ 𝑄 ) → 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
39 |
33 35 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ) |
40 |
|
df-br |
⊢ ( 𝑃 ≤ if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) ↔ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ≤ ) |
41 |
39 40
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ≤ ) |
42 |
20 28
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ( ℝ × ℝ ) ) |
43 |
41 42
|
elind |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
44 |
43 15
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
45 |
31 44
|
jca |
⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |