| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioombl1.b | ⊢ 𝐵  =  ( 𝐴 (,) +∞ ) | 
						
							| 2 |  | ioombl1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | ioombl1.e | ⊢ ( 𝜑  →  𝐸  ⊆  ℝ ) | 
						
							| 4 |  | ioombl1.v | ⊢ ( 𝜑  →  ( vol* ‘ 𝐸 )  ∈  ℝ ) | 
						
							| 5 |  | ioombl1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 6 |  | ioombl1.s | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 7 |  | ioombl1.t | ⊢ 𝑇  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) | 
						
							| 8 |  | ioombl1.u | ⊢ 𝑈  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) | 
						
							| 9 |  | ioombl1.f1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 10 |  | ioombl1.f2 | ⊢ ( 𝜑  →  𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 ) ) | 
						
							| 11 |  | ioombl1.f3 | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝐸 )  +  𝐶 ) ) | 
						
							| 12 |  | ioombl1.p | ⊢ 𝑃  =  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 13 |  | ioombl1.q | ⊢ 𝑄  =  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 14 |  | ioombl1.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 15 |  | ioombl1.h | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 17 |  | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 18 | 9 17 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 19 | 18 | simp1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 20 | 12 19 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 21 | 16 20 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ ) | 
						
							| 22 | 18 | simp2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 23 | 13 22 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 24 |  | min2 | ⊢ ( ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ≤  𝑄 ) | 
						
							| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ≤  𝑄 ) | 
						
							| 26 |  | df-br | ⊢ ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ≤  𝑄  ↔  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈   ≤  ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈   ≤  ) | 
						
							| 28 | 21 23 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ ) | 
						
							| 29 | 28 23 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 30 | 27 29 | elind | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 31 | 30 14 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 32 |  | max1 | ⊢ ( ( 𝑃  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  𝑃  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 33 | 20 16 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 34 | 18 | simp3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 35 | 34 12 13 | 3brtr4g | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ≤  𝑄 ) | 
						
							| 36 |  | breq2 | ⊢ ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  →  ( 𝑃  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ↔  𝑃  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) ) | 
						
							| 37 |  | breq2 | ⊢ ( 𝑄  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  →  ( 𝑃  ≤  𝑄  ↔  𝑃  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) ) | 
						
							| 38 | 36 37 | ifboth | ⊢ ( ( 𝑃  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∧  𝑃  ≤  𝑄 )  →  𝑃  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 39 | 33 35 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 40 |  | df-br | ⊢ ( 𝑃  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ↔  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈   ≤  ) | 
						
							| 41 | 39 40 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈   ≤  ) | 
						
							| 42 | 20 28 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 43 | 41 42 | elind | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 44 | 43 15 | fmptd | ⊢ ( 𝜑  →  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 45 | 31 44 | jca | ⊢ ( 𝜑  →  ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) ) |