| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioombl1.b | ⊢ 𝐵  =  ( 𝐴 (,) +∞ ) | 
						
							| 2 |  | ioombl1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | ioombl1.e | ⊢ ( 𝜑  →  𝐸  ⊆  ℝ ) | 
						
							| 4 |  | ioombl1.v | ⊢ ( 𝜑  →  ( vol* ‘ 𝐸 )  ∈  ℝ ) | 
						
							| 5 |  | ioombl1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 6 |  | ioombl1.s | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 7 |  | ioombl1.t | ⊢ 𝑇  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) | 
						
							| 8 |  | ioombl1.u | ⊢ 𝑈  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) | 
						
							| 9 |  | ioombl1.f1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 10 |  | ioombl1.f2 | ⊢ ( 𝜑  →  𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 ) ) | 
						
							| 11 |  | ioombl1.f3 | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝐸 )  +  𝐶 ) ) | 
						
							| 12 |  | ioombl1.p | ⊢ 𝑃  =  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 13 |  | ioombl1.q | ⊢ 𝑄  =  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 14 |  | ioombl1.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 15 |  | ioombl1.h | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 16 |  | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 17 | 9 16 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 18 | 17 | simp2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 19 | 13 18 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ℂ ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 22 | 17 | simp1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 23 | 12 22 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 24 | 21 23 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ ) | 
						
							| 25 | 24 19 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ ) | 
						
							| 26 | 25 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℂ ) | 
						
							| 27 | 23 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 28 | 20 26 27 | npncand | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑄  −  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) )  +  ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  −  𝑃 ) )  =  ( 𝑄  −  𝑃 ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem1 | ⊢ ( 𝜑  →  ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐺 )  =  ( ( abs  ∘   −  )  ∘  𝐺 ) | 
						
							| 32 | 31 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 33 | 30 32 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 35 |  | opex | ⊢ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈  V | 
						
							| 36 | 14 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈  V )  →  ( 𝐺 ‘ 𝑛 )  =  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 37 | 34 35 36 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  =  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 2nd  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) ) | 
						
							| 39 |  | op2ndg | ⊢ ( ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  ( 2nd  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  𝑄 ) | 
						
							| 40 | 25 19 39 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  𝑄 ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  =  𝑄 ) | 
						
							| 42 | 37 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 1st  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) ) | 
						
							| 43 |  | op1stg | ⊢ ( ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  ( 1st  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 44 | 25 19 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 45 | 42 44 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 46 | 41 45 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝑄  −  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) ) | 
						
							| 47 | 33 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  =  ( 𝑄  −  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) ) | 
						
							| 48 | 29 | simprd | ⊢ ( 𝜑  →  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐻 )  =  ( ( abs  ∘   −  )  ∘  𝐻 ) | 
						
							| 50 | 49 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  =  ( ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 48 50 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  =  ( ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 52 |  | opex | ⊢ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈  V | 
						
							| 53 | 15 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈  V )  →  ( 𝐻 ‘ 𝑛 )  =  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 54 | 34 52 53 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐻 ‘ 𝑛 )  =  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 55 | 54 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  =  ( 2nd  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) ) | 
						
							| 56 |  | op2ndg | ⊢ ( ( 𝑃  ∈  ℝ  ∧  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ )  →  ( 2nd  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 57 | 23 25 56 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 58 | 55 57 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 59 | 54 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  =  ( 1st  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) ) | 
						
							| 60 |  | op1stg | ⊢ ( ( 𝑃  ∈  ℝ  ∧  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ )  →  ( 1st  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  𝑃 ) | 
						
							| 61 | 23 25 60 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  𝑃 ) | 
						
							| 62 | 59 61 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  =  𝑃 ) | 
						
							| 63 | 58 62 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) ) )  =  ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  −  𝑃 ) ) | 
						
							| 64 | 51 63 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  =  ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  −  𝑃 ) ) | 
						
							| 65 | 47 64 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) )  =  ( ( 𝑄  −  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) )  +  ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  −  𝑃 ) ) ) | 
						
							| 66 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐹 )  =  ( ( abs  ∘   −  )  ∘  𝐹 ) | 
						
							| 67 | 66 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  =  ( ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 68 | 9 67 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  =  ( ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 69 | 13 12 | oveq12i | ⊢ ( 𝑄  −  𝑃 )  =  ( ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  −  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 70 | 68 69 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  =  ( 𝑄  −  𝑃 ) ) | 
						
							| 71 | 28 65 70 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) )  =  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) |