| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioombl1.b | ⊢ 𝐵  =  ( 𝐴 (,) +∞ ) | 
						
							| 2 |  | ioombl1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | ioombl1.e | ⊢ ( 𝜑  →  𝐸  ⊆  ℝ ) | 
						
							| 4 |  | ioombl1.v | ⊢ ( 𝜑  →  ( vol* ‘ 𝐸 )  ∈  ℝ ) | 
						
							| 5 |  | ioombl1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 6 |  | ioombl1.s | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 7 |  | ioombl1.t | ⊢ 𝑇  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) | 
						
							| 8 |  | ioombl1.u | ⊢ 𝑈  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) | 
						
							| 9 |  | ioombl1.f1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 10 |  | ioombl1.f2 | ⊢ ( 𝜑  →  𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 ) ) | 
						
							| 11 |  | ioombl1.f3 | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝐸 )  +  𝐶 ) ) | 
						
							| 12 |  | ioombl1.p | ⊢ 𝑃  =  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 13 |  | ioombl1.q | ⊢ 𝑄  =  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 14 |  | ioombl1.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 15 |  | ioombl1.h | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 16 |  | inss1 | ⊢ ( 𝐸  ∩  𝐵 )  ⊆  𝐸 | 
						
							| 17 |  | ovolsscl | ⊢ ( ( ( 𝐸  ∩  𝐵 )  ⊆  𝐸  ∧  𝐸  ⊆  ℝ  ∧  ( vol* ‘ 𝐸 )  ∈  ℝ )  →  ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  ∈  ℝ ) | 
						
							| 18 | 16 3 4 17 | mp3an2i | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  ∈  ℝ ) | 
						
							| 19 |  | difss | ⊢ ( 𝐸  ∖  𝐵 )  ⊆  𝐸 | 
						
							| 20 |  | ovolsscl | ⊢ ( ( ( 𝐸  ∖  𝐵 )  ⊆  𝐸  ∧  𝐸  ⊆  ℝ  ∧  ( vol* ‘ 𝐸 )  ∈  ℝ )  →  ( vol* ‘ ( 𝐸  ∖  𝐵 ) )  ∈  ℝ ) | 
						
							| 21 | 19 3 4 20 | mp3an2i | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐸  ∖  𝐵 ) )  ∈  ℝ ) | 
						
							| 22 | 18 21 | readdcld | ⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  +  ( vol* ‘ ( 𝐸  ∖  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem2 | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 24 | 5 | rpred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 25 | 4 24 | readdcld | ⊢ ( 𝜑  →  ( ( vol* ‘ 𝐸 )  +  𝐶 )  ∈  ℝ ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem1 | ⊢ ( 𝜑  →  ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐺 )  =  ( ( abs  ∘   −  )  ∘  𝐺 ) | 
						
							| 29 | 28 7 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 30 | 27 29 | syl | ⊢ ( 𝜑  →  𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 31 | 30 | frnd | ⊢ ( 𝜑  →  ran  𝑇  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 32 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 33 | 31 32 | sstrdi | ⊢ ( 𝜑  →  ran  𝑇  ⊆  ℝ ) | 
						
							| 34 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 35 | 30 | fdmd | ⊢ ( 𝜑  →  dom  𝑇  =  ℕ ) | 
						
							| 36 | 34 35 | eleqtrrid | ⊢ ( 𝜑  →  1  ∈  dom  𝑇 ) | 
						
							| 37 | 36 | ne0d | ⊢ ( 𝜑  →  dom  𝑇  ≠  ∅ ) | 
						
							| 38 |  | dm0rn0 | ⊢ ( dom  𝑇  =  ∅  ↔  ran  𝑇  =  ∅ ) | 
						
							| 39 | 38 | necon3bii | ⊢ ( dom  𝑇  ≠  ∅  ↔  ran  𝑇  ≠  ∅ ) | 
						
							| 40 | 37 39 | sylib | ⊢ ( 𝜑  →  ran  𝑇  ≠  ∅ ) | 
						
							| 41 | 30 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 42 | 32 41 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 43 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐹 )  =  ( ( abs  ∘   −  )  ∘  𝐹 ) | 
						
							| 44 | 43 6 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 45 | 9 44 | syl | ⊢ ( 𝜑  →  𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 46 | 45 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑆 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 47 | 32 46 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑆 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 48 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ ) | 
						
							| 50 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 51 | 49 50 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 52 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝜑 ) | 
						
							| 53 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  →  𝑛  ∈  ℕ ) | 
						
							| 54 | 28 | ovolfsf | ⊢ ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ( ( abs  ∘   −  )  ∘  𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 55 | 27 54 | syl | ⊢ ( 𝜑  →  ( ( abs  ∘   −  )  ∘  𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 56 | 55 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 57 | 32 56 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 58 | 52 53 57 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 59 | 43 | ovolfsf | ⊢ ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ( ( abs  ∘   −  )  ∘  𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 60 | 9 59 | syl | ⊢ ( 𝜑  →  ( ( abs  ∘   −  )  ∘  𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 61 | 60 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 62 |  | elrege0 | ⊢ ( ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 63 | 61 62 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 64 | 63 | simpld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 65 | 52 53 64 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 66 | 26 | simprd | ⊢ ( 𝜑  →  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 67 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐻 )  =  ( ( abs  ∘   −  )  ∘  𝐻 ) | 
						
							| 68 | 67 | ovolfsf | ⊢ ( 𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ( ( abs  ∘   −  )  ∘  𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 69 | 66 68 | syl | ⊢ ( 𝜑  →  ( ( abs  ∘   −  )  ∘  𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 70 | 69 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 71 |  | elrege0 | ⊢ ( ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) | 
						
							| 72 | 70 71 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) | 
						
							| 73 | 72 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) | 
						
							| 74 | 72 | simpld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 75 | 57 74 | addge01d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ↔  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ≤  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) ) | 
						
							| 76 | 73 75 | mpbid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ≤  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) | 
						
							| 77 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ioombl1lem3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) )  =  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 78 | 76 77 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 79 | 52 53 78 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 80 | 51 58 65 79 | serle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑗 )  ≤  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑗 ) ) | 
						
							| 81 | 7 | fveq1i | ⊢ ( 𝑇 ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑗 ) | 
						
							| 82 | 6 | fveq1i | ⊢ ( 𝑆 ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑗 ) | 
						
							| 83 | 80 81 82 | 3brtr4g | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ‘ 𝑗 )  ≤  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 84 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 85 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  =  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 86 | 63 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 87 | 45 | frnd | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 88 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 89 | 87 88 | sstrdi | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ* ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ran  𝑆  ⊆  ℝ* ) | 
						
							| 91 | 45 | ffnd | ⊢ ( 𝜑  →  𝑆  Fn  ℕ ) | 
						
							| 92 |  | fnfvelrn | ⊢ ( ( 𝑆  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ∈  ran  𝑆 ) | 
						
							| 93 | 91 92 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ∈  ran  𝑆 ) | 
						
							| 94 |  | supxrub | ⊢ ( ( ran  𝑆  ⊆  ℝ*  ∧  ( 𝑆 ‘ 𝑘 )  ∈  ran  𝑆 )  →  ( 𝑆 ‘ 𝑘 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 95 | 90 93 94 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 96 | 95 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 97 |  | brralrspcev | ⊢ ( ( sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 98 | 23 96 97 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 99 | 50 6 84 85 64 86 98 | isumsup2 | ⊢ ( 𝜑  →  𝑆  ⇝  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 100 | 87 32 | sstrdi | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ ) | 
						
							| 101 | 45 | fdmd | ⊢ ( 𝜑  →  dom  𝑆  =  ℕ ) | 
						
							| 102 | 34 101 | eleqtrrid | ⊢ ( 𝜑  →  1  ∈  dom  𝑆 ) | 
						
							| 103 | 102 | ne0d | ⊢ ( 𝜑  →  dom  𝑆  ≠  ∅ ) | 
						
							| 104 |  | dm0rn0 | ⊢ ( dom  𝑆  =  ∅  ↔  ran  𝑆  =  ∅ ) | 
						
							| 105 | 104 | necon3bii | ⊢ ( dom  𝑆  ≠  ∅  ↔  ran  𝑆  ≠  ∅ ) | 
						
							| 106 | 103 105 | sylib | ⊢ ( 𝜑  →  ran  𝑆  ≠  ∅ ) | 
						
							| 107 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑆 ‘ 𝑘 )  →  ( 𝑧  ≤  𝑥  ↔  ( 𝑆 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 108 | 107 | ralrn | ⊢ ( 𝑆  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 109 | 91 108 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  𝑥  ↔  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 110 | 109 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 111 | 98 110 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  𝑥 ) | 
						
							| 112 |  | supxrre | ⊢ ( ( ran  𝑆  ⊆  ℝ  ∧  ran  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  𝑥 )  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  =  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 113 | 100 106 111 112 | syl3anc | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  =  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 114 | 99 113 | breqtrrd | ⊢ ( 𝜑  →  𝑆  ⇝  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  𝑆  ⇝  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 116 | 6 115 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) )  ⇝  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 117 | 64 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 118 | 86 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 119 | 50 49 116 117 118 | climserle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 120 | 82 119 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑆 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 121 | 42 47 48 83 120 | letrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 122 | 121 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 123 |  | brralrspcev | ⊢ ( ( sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ  ∧  ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 124 | 23 122 123 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 125 | 30 | ffnd | ⊢ ( 𝜑  →  𝑇  Fn  ℕ ) | 
						
							| 126 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑇 ‘ 𝑗 )  →  ( 𝑧  ≤  𝑥  ↔  ( 𝑇 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 127 | 126 | ralrn | ⊢ ( 𝑇  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  𝑇 𝑧  ≤  𝑥  ↔  ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 128 | 125 127 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝑇 𝑧  ≤  𝑥  ↔  ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 129 | 128 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑇 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( 𝑇 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 130 | 124 129 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑇 𝑧  ≤  𝑥 ) | 
						
							| 131 | 33 40 130 | suprcld | ⊢ ( 𝜑  →  sup ( ran  𝑇 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 132 | 67 8 | ovolsf | ⊢ ( 𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 133 | 66 132 | syl | ⊢ ( 𝜑  →  𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 134 | 133 | frnd | ⊢ ( 𝜑  →  ran  𝑈  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 135 | 134 32 | sstrdi | ⊢ ( 𝜑  →  ran  𝑈  ⊆  ℝ ) | 
						
							| 136 | 133 | fdmd | ⊢ ( 𝜑  →  dom  𝑈  =  ℕ ) | 
						
							| 137 | 34 136 | eleqtrrid | ⊢ ( 𝜑  →  1  ∈  dom  𝑈 ) | 
						
							| 138 | 137 | ne0d | ⊢ ( 𝜑  →  dom  𝑈  ≠  ∅ ) | 
						
							| 139 |  | dm0rn0 | ⊢ ( dom  𝑈  =  ∅  ↔  ran  𝑈  =  ∅ ) | 
						
							| 140 | 139 | necon3bii | ⊢ ( dom  𝑈  ≠  ∅  ↔  ran  𝑈  ≠  ∅ ) | 
						
							| 141 | 138 140 | sylib | ⊢ ( 𝜑  →  ran  𝑈  ≠  ∅ ) | 
						
							| 142 | 133 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑈 ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 143 | 32 142 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑈 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 144 | 52 53 74 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 145 |  | elrege0 | ⊢ ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 ) ) ) | 
						
							| 146 | 56 145 | sylib | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 ) ) ) | 
						
							| 147 | 146 | simprd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 148 | 74 57 | addge02d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ↔  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ≤  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) ) | 
						
							| 149 | 147 148 | mpbid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ≤  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) | 
						
							| 150 | 149 77 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 151 | 52 53 150 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 152 | 51 144 65 151 | serle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) ‘ 𝑗 )  ≤  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑗 ) ) | 
						
							| 153 | 8 | fveq1i | ⊢ ( 𝑈 ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) ‘ 𝑗 ) | 
						
							| 154 | 152 153 82 | 3brtr4g | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑈 ‘ 𝑗 )  ≤  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 155 | 143 47 48 154 120 | letrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑈 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 156 | 155 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 157 |  | brralrspcev | ⊢ ( ( sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ  ∧  ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 158 | 23 156 157 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 159 | 133 | ffnd | ⊢ ( 𝜑  →  𝑈  Fn  ℕ ) | 
						
							| 160 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑈 ‘ 𝑗 )  →  ( 𝑧  ≤  𝑥  ↔  ( 𝑈 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 161 | 160 | ralrn | ⊢ ( 𝑈  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  𝑈 𝑧  ≤  𝑥  ↔  ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 162 | 159 161 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝑈 𝑧  ≤  𝑥  ↔  ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 163 | 162 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑈 𝑧  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ ( 𝑈 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 164 | 158 163 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑈 𝑧  ≤  𝑥 ) | 
						
							| 165 | 135 141 164 | suprcld | ⊢ ( 𝜑  →  sup ( ran  𝑈 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 166 |  | ssralv | ⊢ ( ( 𝐸  ∩  𝐵 )  ⊆  𝐸  →  ( ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 167 | 16 166 | ax-mp | ⊢ ( ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 168 | 12 | breq1i | ⊢ ( 𝑃  <  𝑥  ↔  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 169 |  | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 170 | 9 169 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 171 | 170 | simp1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 172 | 12 171 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 173 | 172 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 174 | 16 3 | sstrid | ⊢ ( 𝜑  →  ( 𝐸  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 175 | 174 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 177 |  | ltle | ⊢ ( ( 𝑃  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑃  <  𝑥  →  𝑃  ≤  𝑥 ) ) | 
						
							| 178 | 173 176 177 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  <  𝑥  →  𝑃  ≤  𝑥 ) ) | 
						
							| 179 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 180 |  | opex | ⊢ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈  V | 
						
							| 181 | 14 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉  ∈  V )  →  ( 𝐺 ‘ 𝑛 )  =  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 182 | 179 180 181 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  =  〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) | 
						
							| 183 | 182 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 1st  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) ) | 
						
							| 184 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 185 | 184 172 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ ) | 
						
							| 186 | 170 | simp2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 187 | 13 186 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 188 | 185 187 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ ) | 
						
							| 189 |  | op1stg | ⊢ ( ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  ( 1st  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 190 | 188 187 189 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 191 | 183 190 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 192 | 191 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 193 | 188 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ ) | 
						
							| 194 | 185 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ ) | 
						
							| 195 | 174 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  ( 𝐸  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 196 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝑥  ∈  ( 𝐸  ∩  𝐵 ) ) | 
						
							| 197 | 195 196 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 198 | 187 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝑄  ∈  ℝ ) | 
						
							| 199 |  | min1 | ⊢ ( ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 200 | 194 198 199 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 201 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 202 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐸  ∩  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 203 | 202 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 204 | 2 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 205 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 206 |  | elioo2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 (,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  <  +∞ ) ) ) | 
						
							| 207 | 204 205 206 | sylancl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  <  +∞ ) ) ) | 
						
							| 208 | 1 | eleq2i | ⊢ ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( 𝐴 (,) +∞ ) ) | 
						
							| 209 |  | ltpnf | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  +∞ ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 )  →  𝑥  <  +∞ ) | 
						
							| 211 | 210 | pm4.71i | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 )  ↔  ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 )  ∧  𝑥  <  +∞ ) ) | 
						
							| 212 |  | df-3an | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  <  +∞ )  ↔  ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 )  ∧  𝑥  <  +∞ ) ) | 
						
							| 213 | 211 212 | bitr4i | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 214 | 207 208 213 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 ) ) ) | 
						
							| 215 |  | simpr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 )  →  𝐴  <  𝑥 ) | 
						
							| 216 | 214 215 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  𝐴  <  𝑥 ) ) | 
						
							| 217 | 216 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  ( 𝑥  ∈  𝐵  →  𝐴  <  𝑥 ) ) | 
						
							| 218 | 203 217 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝐴  <  𝑥 ) | 
						
							| 219 | 201 197 218 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 220 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  𝑃  ≤  𝑥 ) | 
						
							| 221 |  | breq1 | ⊢ ( 𝐴  =  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  →  ( 𝐴  ≤  𝑥  ↔  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑥 ) ) | 
						
							| 222 |  | breq1 | ⊢ ( 𝑃  =  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  →  ( 𝑃  ≤  𝑥  ↔  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑥 ) ) | 
						
							| 223 | 221 222 | ifboth | ⊢ ( ( 𝐴  ≤  𝑥  ∧  𝑃  ≤  𝑥 )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑥 ) | 
						
							| 224 | 219 220 223 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑥 ) | 
						
							| 225 | 193 194 197 200 224 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ≤  𝑥 ) | 
						
							| 226 | 192 225 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑃  ≤  𝑥 ) )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 227 | 226 | expr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  ≤  𝑥  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 228 | 178 227 | syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  <  𝑥  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 229 | 168 228 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 230 | 13 | breq2i | ⊢ ( 𝑥  <  𝑄  ↔  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 231 | 187 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 232 |  | ltle | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  ( 𝑥  <  𝑄  →  𝑥  ≤  𝑄 ) ) | 
						
							| 233 | 176 231 232 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  𝑄  →  𝑥  ≤  𝑄 ) ) | 
						
							| 234 | 230 233 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  →  𝑥  ≤  𝑄 ) ) | 
						
							| 235 | 182 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 2nd  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 ) ) | 
						
							| 236 |  | op2ndg | ⊢ ( ( if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ  ∧  𝑄  ∈  ℝ )  →  ( 2nd  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  𝑄 ) | 
						
							| 237 | 188 187 236 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ 〈 if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ,  𝑄 〉 )  =  𝑄 ) | 
						
							| 238 | 235 237 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  =  𝑄 ) | 
						
							| 239 | 238 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  =  𝑄 ) | 
						
							| 240 | 239 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  ↔  𝑥  ≤  𝑄 ) ) | 
						
							| 241 | 234 240 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  →  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 242 | 229 241 | anim12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 243 | 242 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∩  𝐵 ) )  →  ( ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 244 | 243 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 245 | 167 244 | syl5 | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 246 |  | ovolfioo | ⊢ ( ( 𝐸  ⊆  ℝ  ∧  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  ( 𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 )  ↔  ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 247 | 3 9 246 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 )  ↔  ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 248 |  | ovolficc | ⊢ ( ( ( 𝐸  ∩  𝐵 )  ⊆  ℝ  ∧  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  ( ( 𝐸  ∩  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 )  ↔  ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 249 | 174 27 248 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐸  ∩  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 )  ↔  ∀ 𝑥  ∈  ( 𝐸  ∩  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 250 | 245 247 249 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 )  →  ( 𝐸  ∩  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 ) ) ) | 
						
							| 251 | 10 250 | mpd | ⊢ ( 𝜑  →  ( 𝐸  ∩  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 ) ) | 
						
							| 252 | 7 | ovollb2 | ⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  ( 𝐸  ∩  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 ) )  →  ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  ≤  sup ( ran  𝑇 ,  ℝ* ,   <  ) ) | 
						
							| 253 | 27 251 252 | syl2anc | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  ≤  sup ( ran  𝑇 ,  ℝ* ,   <  ) ) | 
						
							| 254 |  | supxrre | ⊢ ( ( ran  𝑇  ⊆  ℝ  ∧  ran  𝑇  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑇 𝑧  ≤  𝑥 )  →  sup ( ran  𝑇 ,  ℝ* ,   <  )  =  sup ( ran  𝑇 ,  ℝ ,   <  ) ) | 
						
							| 255 | 33 40 130 254 | syl3anc | ⊢ ( 𝜑  →  sup ( ran  𝑇 ,  ℝ* ,   <  )  =  sup ( ran  𝑇 ,  ℝ ,   <  ) ) | 
						
							| 256 | 253 255 | breqtrd | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  ≤  sup ( ran  𝑇 ,  ℝ ,   <  ) ) | 
						
							| 257 |  | ssralv | ⊢ ( ( 𝐸  ∖  𝐵 )  ⊆  𝐸  →  ( ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 258 | 19 257 | ax-mp | ⊢ ( ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 259 | 172 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 260 | 19 3 | sstrid | ⊢ ( 𝜑  →  ( 𝐸  ∖  𝐵 )  ⊆  ℝ ) | 
						
							| 261 | 260 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 262 | 261 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 263 | 259 262 177 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  <  𝑥  →  𝑃  ≤  𝑥 ) ) | 
						
							| 264 | 168 263 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  →  𝑃  ≤  𝑥 ) ) | 
						
							| 265 |  | opex | ⊢ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈  V | 
						
							| 266 | 15 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉  ∈  V )  →  ( 𝐻 ‘ 𝑛 )  =  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 267 | 179 265 266 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐻 ‘ 𝑛 )  =  〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) | 
						
							| 268 | 267 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  =  ( 1st  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) ) | 
						
							| 269 |  | op1stg | ⊢ ( ( 𝑃  ∈  ℝ  ∧  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ )  →  ( 1st  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  𝑃 ) | 
						
							| 270 | 172 188 269 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  𝑃 ) | 
						
							| 271 | 268 270 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  =  𝑃 ) | 
						
							| 272 | 271 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  =  𝑃 ) | 
						
							| 273 | 272 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ↔  𝑃  ≤  𝑥 ) ) | 
						
							| 274 | 264 273 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  →  ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 275 | 187 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 276 | 262 275 232 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  𝑄  →  𝑥  ≤  𝑄 ) ) | 
						
							| 277 | 260 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ( 𝐸  ∖  𝐵 )  ⊆  ℝ ) | 
						
							| 278 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ∈  ( 𝐸  ∖  𝐵 ) ) | 
						
							| 279 | 277 278 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 280 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 281 | 172 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 282 | 280 281 | ifcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∈  ℝ ) | 
						
							| 283 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝐸  ∖  𝐵 )  →  ¬  𝑥  ∈  𝐵 ) | 
						
							| 284 | 283 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ¬  𝑥  ∈  𝐵 ) | 
						
							| 285 | 279 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ( 𝐴  <  𝑥  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 ) ) ) | 
						
							| 286 | 214 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  <  𝑥 ) ) ) | 
						
							| 287 | 285 286 | bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ( 𝐴  <  𝑥  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 288 | 284 287 | mtbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ¬  𝐴  <  𝑥 ) | 
						
							| 289 | 279 280 288 | nltled | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ≤  𝐴 ) | 
						
							| 290 |  | max2 | ⊢ ( ( 𝑃  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  𝐴  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 291 | 281 280 290 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝐴  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 292 | 279 280 282 289 291 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ) | 
						
							| 293 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ≤  𝑄 ) | 
						
							| 294 |  | breq2 | ⊢ ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  →  ( 𝑥  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ↔  𝑥  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) ) | 
						
							| 295 |  | breq2 | ⊢ ( 𝑄  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  →  ( 𝑥  ≤  𝑄  ↔  𝑥  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) ) | 
						
							| 296 | 294 295 | ifboth | ⊢ ( ( 𝑥  ≤  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ∧  𝑥  ≤  𝑄 )  →  𝑥  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 297 | 292 293 296 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ≤  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 298 | 267 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  =  ( 2nd  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 ) ) | 
						
							| 299 |  | op2ndg | ⊢ ( ( 𝑃  ∈  ℝ  ∧  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 )  ∈  ℝ )  →  ( 2nd  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 300 | 172 188 299 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ 〈 𝑃 ,  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) 〉 )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 301 | 298 300 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 302 | 301 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) )  =  if ( if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 )  ≤  𝑄 ,  if ( 𝑃  ≤  𝐴 ,  𝐴 ,  𝑃 ) ,  𝑄 ) ) | 
						
							| 303 | 297 302 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑥  ≤  𝑄 ) )  →  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) | 
						
							| 304 | 303 | expr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ≤  𝑄  →  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 305 | 276 304 | syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  𝑄  →  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 306 | 230 305 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) )  →  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 307 | 274 306 | anim12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 308 | 307 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐸  ∖  𝐵 ) )  →  ( ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 309 | 308 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 310 | 258 309 | syl5 | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐸 ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐹 ‘ 𝑛 ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 311 |  | ovolficc | ⊢ ( ( ( 𝐸  ∖  𝐵 )  ⊆  ℝ  ∧  𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  ( ( 𝐸  ∖  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐻 )  ↔  ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 312 | 260 66 311 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐸  ∖  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐻 )  ↔  ∀ 𝑥  ∈  ( 𝐸  ∖  𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐻 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 313 | 310 247 312 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐸  ⊆  ∪  ran  ( (,)  ∘  𝐹 )  →  ( 𝐸  ∖  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐻 ) ) ) | 
						
							| 314 | 10 313 | mpd | ⊢ ( 𝜑  →  ( 𝐸  ∖  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐻 ) ) | 
						
							| 315 | 8 | ovollb2 | ⊢ ( ( 𝐻 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  ( 𝐸  ∖  𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐻 ) )  →  ( vol* ‘ ( 𝐸  ∖  𝐵 ) )  ≤  sup ( ran  𝑈 ,  ℝ* ,   <  ) ) | 
						
							| 316 | 66 314 315 | syl2anc | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐸  ∖  𝐵 ) )  ≤  sup ( ran  𝑈 ,  ℝ* ,   <  ) ) | 
						
							| 317 |  | supxrre | ⊢ ( ( ran  𝑈  ⊆  ℝ  ∧  ran  𝑈  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ran  𝑈 𝑧  ≤  𝑥 )  →  sup ( ran  𝑈 ,  ℝ* ,   <  )  =  sup ( ran  𝑈 ,  ℝ ,   <  ) ) | 
						
							| 318 | 135 141 164 317 | syl3anc | ⊢ ( 𝜑  →  sup ( ran  𝑈 ,  ℝ* ,   <  )  =  sup ( ran  𝑈 ,  ℝ ,   <  ) ) | 
						
							| 319 | 316 318 | breqtrd | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐸  ∖  𝐵 ) )  ≤  sup ( ran  𝑈 ,  ℝ ,   <  ) ) | 
						
							| 320 | 18 21 131 165 256 319 | le2addd | ⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  +  ( vol* ‘ ( 𝐸  ∖  𝐵 ) ) )  ≤  ( sup ( ran  𝑇 ,  ℝ ,   <  )  +  sup ( ran  𝑈 ,  ℝ ,   <  ) ) ) | 
						
							| 321 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  =  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 322 | 50 7 84 321 57 147 124 | isumsup2 | ⊢ ( 𝜑  →  𝑇  ⇝  sup ( ran  𝑇 ,  ℝ ,   <  ) ) | 
						
							| 323 |  | seqex | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) )  ∈  V | 
						
							| 324 | 6 323 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 325 | 324 | a1i | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 326 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  =  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) | 
						
							| 327 | 50 8 84 326 74 73 158 | isumsup2 | ⊢ ( 𝜑  →  𝑈  ⇝  sup ( ran  𝑈 ,  ℝ ,   <  ) ) | 
						
							| 328 | 42 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑇 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 329 | 143 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑈 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 330 | 57 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 331 | 52 53 330 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 332 | 74 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 333 | 52 53 332 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 334 | 77 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  =  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) | 
						
							| 335 | 52 53 334 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑛 )  =  ( ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑛 )  +  ( ( ( abs  ∘   −  )  ∘  𝐻 ) ‘ 𝑛 ) ) ) | 
						
							| 336 | 51 331 333 335 | seradd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑗 )  =  ( ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑗 )  +  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) ‘ 𝑗 ) ) ) | 
						
							| 337 | 81 153 | oveq12i | ⊢ ( ( 𝑇 ‘ 𝑗 )  +  ( 𝑈 ‘ 𝑗 ) )  =  ( ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑗 )  +  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐻 ) ) ‘ 𝑗 ) ) | 
						
							| 338 | 336 82 337 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝑆 ‘ 𝑗 )  =  ( ( 𝑇 ‘ 𝑗 )  +  ( 𝑈 ‘ 𝑗 ) ) ) | 
						
							| 339 | 50 84 322 325 327 328 329 338 | climadd | ⊢ ( 𝜑  →  𝑆  ⇝  ( sup ( ran  𝑇 ,  ℝ ,   <  )  +  sup ( ran  𝑈 ,  ℝ ,   <  ) ) ) | 
						
							| 340 |  | climuni | ⊢ ( ( 𝑆  ⇝  ( sup ( ran  𝑇 ,  ℝ ,   <  )  +  sup ( ran  𝑈 ,  ℝ ,   <  ) )  ∧  𝑆  ⇝  sup ( ran  𝑆 ,  ℝ* ,   <  ) )  →  ( sup ( ran  𝑇 ,  ℝ ,   <  )  +  sup ( ran  𝑈 ,  ℝ ,   <  ) )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 341 | 339 114 340 | syl2anc | ⊢ ( 𝜑  →  ( sup ( ran  𝑇 ,  ℝ ,   <  )  +  sup ( ran  𝑈 ,  ℝ ,   <  ) )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 342 | 320 341 | breqtrd | ⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  +  ( vol* ‘ ( 𝐸  ∖  𝐵 ) ) )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 343 | 22 23 25 342 11 | letrd | ⊢ ( 𝜑  →  ( ( vol* ‘ ( 𝐸  ∩  𝐵 ) )  +  ( vol* ‘ ( 𝐸  ∖  𝐵 ) ) )  ≤  ( ( vol* ‘ 𝐸 )  +  𝐶 ) ) |