| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 3 |  | rexr | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 5 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 6 | 5 | rehalfcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 8 |  | avglt1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  𝐴  <  ( ( 𝐴  +  𝐵 )  /  2 ) ) ) | 
						
							| 9 | 8 | biimp3a | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  𝐴  <  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 10 |  | avglt2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵 ) ) | 
						
							| 11 | 10 | biimp3a | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵 ) | 
						
							| 12 | 2 4 7 9 11 | eliood | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ( 𝐴 (,) 𝐵 ) ) |