Metamath Proof Explorer


Theorem ioon0

Description: An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007)

Ref Expression
Assertion ioon0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ioo0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵𝐴 ) )
2 xrlenlt ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
3 2 ancoms ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
4 1 3 bitr2d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ¬ 𝐴 < 𝐵 ↔ ( 𝐴 (,) 𝐵 ) = ∅ ) )
5 4 necon1abid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) )