Metamath Proof Explorer


Theorem ioonct

Description: A nonempty open interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ioonct.b ( 𝜑𝐴 ∈ ℝ* )
ioonct.c ( 𝜑𝐵 ∈ ℝ* )
ioonct.l ( 𝜑𝐴 < 𝐵 )
ioonct.a 𝐶 = ( 𝐴 (,) 𝐵 )
Assertion ioonct ( 𝜑 → ¬ 𝐶 ≼ ω )

Proof

Step Hyp Ref Expression
1 ioonct.b ( 𝜑𝐴 ∈ ℝ* )
2 ioonct.c ( 𝜑𝐵 ∈ ℝ* )
3 ioonct.l ( 𝜑𝐴 < 𝐵 )
4 ioonct.a 𝐶 = ( 𝐴 (,) 𝐵 )
5 ioontr ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 )
6 5 a1i ( ( 𝜑𝐶 ≼ ω ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) )
7 ioossre ( 𝐴 (,) 𝐵 ) ⊆ ℝ
8 7 a1i ( ( 𝜑𝐶 ≼ ω ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ )
9 4 breq1i ( 𝐶 ≼ ω ↔ ( 𝐴 (,) 𝐵 ) ≼ ω )
10 9 biimpi ( 𝐶 ≼ ω → ( 𝐴 (,) 𝐵 ) ≼ ω )
11 nnenom ℕ ≈ ω
12 11 ensymi ω ≈ ℕ
13 12 a1i ( 𝐶 ≼ ω → ω ≈ ℕ )
14 domentr ( ( ( 𝐴 (,) 𝐵 ) ≼ ω ∧ ω ≈ ℕ ) → ( 𝐴 (,) 𝐵 ) ≼ ℕ )
15 10 13 14 syl2anc ( 𝐶 ≼ ω → ( 𝐴 (,) 𝐵 ) ≼ ℕ )
16 15 adantl ( ( 𝜑𝐶 ≼ ω ) → ( 𝐴 (,) 𝐵 ) ≼ ℕ )
17 rectbntr0 ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ∅ )
18 8 16 17 syl2anc ( ( 𝜑𝐶 ≼ ω ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ∅ )
19 6 18 eqtr3d ( ( 𝜑𝐶 ≼ ω ) → ( 𝐴 (,) 𝐵 ) = ∅ )
20 ioon0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) )
21 1 2 20 syl2anc ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) )
22 3 21 mpbird ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ )
23 22 neneqd ( 𝜑 → ¬ ( 𝐴 (,) 𝐵 ) = ∅ )
24 23 adantr ( ( 𝜑𝐶 ≼ ω ) → ¬ ( 𝐴 (,) 𝐵 ) = ∅ )
25 19 24 pm2.65da ( 𝜑 → ¬ 𝐶 ≼ ω )