Step |
Hyp |
Ref |
Expression |
1 |
|
ioonct.b |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
ioonct.c |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
ioonct.l |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
ioonct.a |
⊢ 𝐶 = ( 𝐴 (,) 𝐵 ) |
5 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ≼ ω ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
7 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ≼ ω ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
9 |
4
|
breq1i |
⊢ ( 𝐶 ≼ ω ↔ ( 𝐴 (,) 𝐵 ) ≼ ω ) |
10 |
9
|
biimpi |
⊢ ( 𝐶 ≼ ω → ( 𝐴 (,) 𝐵 ) ≼ ω ) |
11 |
|
nnenom |
⊢ ℕ ≈ ω |
12 |
11
|
ensymi |
⊢ ω ≈ ℕ |
13 |
12
|
a1i |
⊢ ( 𝐶 ≼ ω → ω ≈ ℕ ) |
14 |
|
domentr |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ≼ ω ∧ ω ≈ ℕ ) → ( 𝐴 (,) 𝐵 ) ≼ ℕ ) |
15 |
10 13 14
|
syl2anc |
⊢ ( 𝐶 ≼ ω → ( 𝐴 (,) 𝐵 ) ≼ ℕ ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ≼ ω ) → ( 𝐴 (,) 𝐵 ) ≼ ℕ ) |
17 |
|
rectbntr0 |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ≼ ℕ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
18 |
8 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ≼ ω ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
19 |
6 18
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐶 ≼ ω ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
20 |
|
ioon0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) ) |
21 |
1 2 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) ) |
22 |
3 21
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
23 |
22
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝐴 (,) 𝐵 ) = ∅ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≼ ω ) → ¬ ( 𝐴 (,) 𝐵 ) = ∅ ) |
25 |
19 24
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐶 ≼ ω ) |