| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltneg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐶  ↔  - 𝐶  <  - 𝐴 ) ) | 
						
							| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  <  𝐶  ↔  - 𝐶  <  - 𝐴 ) ) | 
						
							| 3 |  | ltneg | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  <  𝐵  ↔  - 𝐵  <  - 𝐶 ) ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  <  𝐵  ↔  - 𝐵  <  - 𝐶 ) ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  <  𝐵  ↔  - 𝐵  <  - 𝐶 ) ) | 
						
							| 6 | 2 5 | anbi12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ↔  ( - 𝐶  <  - 𝐴  ∧  - 𝐵  <  - 𝐶 ) ) ) | 
						
							| 7 | 6 | biancomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ↔  ( - 𝐵  <  - 𝐶  ∧  - 𝐶  <  - 𝐴 ) ) ) | 
						
							| 8 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 9 |  | rexr | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* ) | 
						
							| 10 |  | rexr | ⊢ ( 𝐶  ∈  ℝ  →  𝐶  ∈  ℝ* ) | 
						
							| 11 |  | elioo5 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 12 | 8 9 10 11 | syl3an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 13 |  | renegcl | ⊢ ( 𝐵  ∈  ℝ  →  - 𝐵  ∈  ℝ ) | 
						
							| 14 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 15 |  | renegcl | ⊢ ( 𝐶  ∈  ℝ  →  - 𝐶  ∈  ℝ ) | 
						
							| 16 |  | rexr | ⊢ ( - 𝐵  ∈  ℝ  →  - 𝐵  ∈  ℝ* ) | 
						
							| 17 |  | rexr | ⊢ ( - 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ* ) | 
						
							| 18 |  | rexr | ⊢ ( - 𝐶  ∈  ℝ  →  - 𝐶  ∈  ℝ* ) | 
						
							| 19 |  | elioo5 | ⊢ ( ( - 𝐵  ∈  ℝ*  ∧  - 𝐴  ∈  ℝ*  ∧  - 𝐶  ∈  ℝ* )  →  ( - 𝐶  ∈  ( - 𝐵 (,) - 𝐴 )  ↔  ( - 𝐵  <  - 𝐶  ∧  - 𝐶  <  - 𝐴 ) ) ) | 
						
							| 20 | 16 17 18 19 | syl3an | ⊢ ( ( - 𝐵  ∈  ℝ  ∧  - 𝐴  ∈  ℝ  ∧  - 𝐶  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 (,) - 𝐴 )  ↔  ( - 𝐵  <  - 𝐶  ∧  - 𝐶  <  - 𝐴 ) ) ) | 
						
							| 21 | 13 14 15 20 | syl3an | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 (,) - 𝐴 )  ↔  ( - 𝐵  <  - 𝐶  ∧  - 𝐶  <  - 𝐴 ) ) ) | 
						
							| 22 | 21 | 3com12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 (,) - 𝐴 )  ↔  ( - 𝐵  <  - 𝐶  ∧  - 𝐶  <  - 𝐴 ) ) ) | 
						
							| 23 | 7 12 22 | 3bitr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  - 𝐶  ∈  ( - 𝐵 (,) - 𝐴 ) ) ) |