Step |
Hyp |
Ref |
Expression |
1 |
|
ltneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ - 𝐶 < - 𝐴 ) ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ - 𝐶 < - 𝐴 ) ) |
3 |
|
ltneg |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 < 𝐵 ↔ - 𝐵 < - 𝐶 ) ) |
4 |
3
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < 𝐵 ↔ - 𝐵 < - 𝐶 ) ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < 𝐵 ↔ - 𝐵 < - 𝐶 ) ) |
6 |
2 5
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( - 𝐶 < - 𝐴 ∧ - 𝐵 < - 𝐶 ) ) ) |
7 |
6
|
biancomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
8 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
9 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
10 |
|
rexr |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) |
11 |
|
elioo5 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
12 |
8 9 10 11
|
syl3an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
13 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
14 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
15 |
|
renegcl |
⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) |
16 |
|
rexr |
⊢ ( - 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ* ) |
17 |
|
rexr |
⊢ ( - 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ* ) |
18 |
|
rexr |
⊢ ( - 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ* ) |
19 |
|
elioo5 |
⊢ ( ( - 𝐵 ∈ ℝ* ∧ - 𝐴 ∈ ℝ* ∧ - 𝐶 ∈ ℝ* ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
20 |
16 17 18 19
|
syl3an |
⊢ ( ( - 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
21 |
13 14 15 20
|
syl3an |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
22 |
21
|
3com12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
23 |
7 12 22
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ) ) |