Metamath Proof Explorer


Theorem iooordt

Description: An open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iooordt ( 𝐴 (,) 𝐵 ) ∈ ( ordTop ‘ ≤ )

Proof

Step Hyp Ref Expression
1 eqid ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
2 eqid ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
3 eqid ran (,) = ran (,)
4 1 2 3 leordtval ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) )
5 letop ( ordTop ‘ ≤ ) ∈ Top
6 4 5 eqeltrri ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top
7 tgclb ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top )
8 6 7 mpbir ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases
9 bastg ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases → ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) )
10 8 9 ax-mp ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) )
11 10 4 sseqtrri ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( ordTop ‘ ≤ )
12 ssun2 ran (,) ⊆ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) )
13 ioorebas ( 𝐴 (,) 𝐵 ) ∈ ran (,)
14 12 13 sselii ( 𝐴 (,) 𝐵 ) ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) )
15 11 14 sselii ( 𝐴 (,) 𝐵 ) ∈ ( ordTop ‘ ≤ )