Metamath Proof Explorer


Theorem ioopos

Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007)

Ref Expression
Assertion ioopos ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 }

Proof

Step Hyp Ref Expression
1 0xr 0 ∈ ℝ*
2 pnfxr +∞ ∈ ℝ*
3 iooval2 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( 0 < 𝑥𝑥 < +∞ ) } )
4 1 2 3 mp2an ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ ( 0 < 𝑥𝑥 < +∞ ) }
5 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
6 5 biantrud ( 𝑥 ∈ ℝ → ( 0 < 𝑥 ↔ ( 0 < 𝑥𝑥 < +∞ ) ) )
7 6 rabbiia { 𝑥 ∈ ℝ ∣ 0 < 𝑥 } = { 𝑥 ∈ ℝ ∣ ( 0 < 𝑥𝑥 < +∞ ) }
8 4 7 eqtr4i ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 }