Step |
Hyp |
Ref |
Expression |
1 |
|
ioorf.1 |
⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) |
2 |
1
|
ioorf |
⊢ 𝐹 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) |
3 |
2
|
ffvelrni |
⊢ ( 𝐴 ∈ ran (,) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
5 |
4
|
elin1d |
⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ≤ ) |
6 |
1
|
ioorval |
⊢ ( 𝐴 ∈ ran (,) → ( 𝐹 ‘ 𝐴 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |
8 |
|
iftrue |
⊢ ( 𝐴 = ∅ → if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) = 〈 0 , 0 〉 ) |
9 |
7 8
|
sylan9eq |
⊢ ( ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 = ∅ ) → ( 𝐹 ‘ 𝐴 ) = 〈 0 , 0 〉 ) |
10 |
|
0re |
⊢ 0 ∈ ℝ |
11 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
12 |
10 10 11
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
13 |
9 12
|
eqeltrdi |
⊢ ( ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 = ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
14 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
15 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
16 |
|
ovelrn |
⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝐴 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) ) ) |
17 |
14 15 16
|
mp2b |
⊢ ( 𝐴 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) ) |
18 |
1
|
ioorinv2 |
⊢ ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) = 〈 𝑎 , 𝑏 〉 ) |
19 |
18
|
adantl |
⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) = 〈 𝑎 , 𝑏 〉 ) |
20 |
|
ioorcl2 |
⊢ ( ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ∧ ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
21 |
20
|
ancoms |
⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
22 |
|
opelxpi |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → 〈 𝑎 , 𝑏 〉 ∈ ( ℝ × ℝ ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 〈 𝑎 , 𝑏 〉 ∈ ( ℝ × ℝ ) ) |
24 |
19 23
|
eqeltrd |
⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ( ℝ × ℝ ) ) |
25 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( vol* ‘ 𝐴 ) = ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ) ) |
27 |
|
neeq1 |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( 𝐴 ≠ ∅ ↔ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) ) |
28 |
26 27
|
anbi12d |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) ↔ ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ↔ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ( ℝ × ℝ ) ) ) |
31 |
28 30
|
imbi12d |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ↔ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ( ℝ × ℝ ) ) ) ) |
32 |
24 31
|
mpbiri |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) |
33 |
32
|
a1i |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) ) |
34 |
33
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) |
35 |
17 34
|
sylbi |
⊢ ( 𝐴 ∈ ran (,) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) |
36 |
35
|
impl |
⊢ ( ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
37 |
13 36
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
38 |
5 37
|
elind |
⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |