| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 2 |
|
iooid |
⊢ ( 0 (,) 0 ) = ∅ |
| 3 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 4 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 5 |
3 4
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 6 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 7 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 0 (,) 0 ) ∈ ran (,) ) |
| 8 |
5 6 6 7
|
mp3an |
⊢ ( 0 (,) 0 ) ∈ ran (,) |
| 9 |
2 8
|
eqeltrri |
⊢ ∅ ∈ ran (,) |
| 10 |
1 9
|
eqeltrdi |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 11 |
|
n0 |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 12 |
|
eliooxr |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 13 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 14 |
5 13
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 15 |
12 14
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 17 |
11 16
|
sylbi |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 18 |
10 17
|
pm2.61ine |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ran (,) |