Metamath Proof Explorer


Theorem iooretop

Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007)

Ref Expression
Assertion iooretop ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) )

Proof

Step Hyp Ref Expression
1 retopbas ran (,) ∈ TopBases
2 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
3 1 2 ax-mp ran (,) ⊆ ( topGen ‘ ran (,) )
4 ioorebas ( 𝐴 (,) 𝐵 ) ∈ ran (,)
5 3 4 sselii ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) )