Metamath Proof Explorer


Theorem ioorp

Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion ioorp ( 0 (,) +∞ ) = ℝ+

Proof

Step Hyp Ref Expression
1 ioopos ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 }
2 df-rp + = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 }
3 1 2 eqtr4i ( 0 (,) +∞ ) = ℝ+