Metamath Proof Explorer


Theorem iooss1

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iooss1 ( ( 𝐴 ∈ ℝ*𝐴𝐵 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐴 (,) 𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 xrlelttr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵 < 𝑤 ) → 𝐴 < 𝑤 ) )
3 1 1 2 ixxss1 ( ( 𝐴 ∈ ℝ*𝐴𝐵 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐴 (,) 𝐶 ) )