Metamath Proof Explorer


Theorem iooss2

Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooss2 ( ( 𝐶 ∈ ℝ*𝐵𝐶 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 xrltletr ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝑤 < 𝐵𝐵𝐶 ) → 𝑤 < 𝐶 ) )
3 1 1 2 ixxss2 ( ( 𝐶 ∈ ℝ*𝐵𝐶 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐶 ) )