Description: An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 2 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 3 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 4 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 ≤ 𝐵 ) ) | |
| 5 | 1 2 3 4 | ixxssixx | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |