Metamath Proof Explorer


Theorem ioossicc

Description: An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007)

Ref Expression
Assertion ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
2 df-icc [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
3 xrltle ( ( 𝐴 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤𝐴𝑤 ) )
4 xrltle ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵𝑤𝐵 ) )
5 1 2 3 4 ixxssixx ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )