Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioossico | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ioo | ⊢ (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ) } ) | |
| 2 | df-ico | ⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏 ) } ) | |
| 3 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 4 | idd | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 < 𝐵 ) ) | |
| 5 | 1 2 3 4 | ixxssixx | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) |