Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
2 |
|
iccid |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
4 |
3
|
uneq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
7 |
1
|
xrleidd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐵 ) |
8 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
9 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
10 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) |
11 |
|
df-ioc |
⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
12 |
|
simpl1 |
⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝑤 ∈ ℝ* ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
14 |
|
simprl |
⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝑤 < 𝐵 ) |
15 |
12 13 14
|
xrltled |
⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝑤 ≤ 𝐵 ) |
16 |
15
|
ex |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) |
17 |
|
xrltletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝑤 ) → 𝐴 < 𝑤 ) ) |
18 |
8 9 10 11 16 17
|
ixxun |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 (,] 𝐵 ) ) |
19 |
5 1 1 6 7 18
|
syl32anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 (,] 𝐵 ) ) |
20 |
4 19
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |