Metamath Proof Explorer


Theorem iooval2

Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooval2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )

Proof

Step Hyp Ref Expression
1 iooval ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
2 inrab2 ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) }
3 ressxr ℝ ⊆ ℝ*
4 sseqin2 ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ )
5 3 4 mpbi ( ℝ* ∩ ℝ ) = ℝ
6 5 rabeqi { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) }
7 2 6 eqtri ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) }
8 elioore ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ )
9 8 ssriv ( 𝐴 (,) 𝐵 ) ⊆ ℝ
10 1 9 eqsstrrdi ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ⊆ ℝ )
11 df-ss ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ⊆ ℝ ↔ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
12 10 11 sylib ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
13 7 12 syl5reqr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
14 1 13 eqtrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )