| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iooval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| 2 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
| 3 |
2
|
ssriv |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 4 |
1 3
|
eqsstrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ⊆ ℝ ) |
| 5 |
|
dfss2 |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ⊆ ℝ ↔ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| 6 |
4 5
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| 7 |
|
inrab2 |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
| 8 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 9 |
|
sseqin2 |
⊢ ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ ) |
| 10 |
8 9
|
mpbi |
⊢ ( ℝ* ∩ ℝ ) = ℝ |
| 11 |
10
|
rabeqi |
⊢ { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
| 12 |
7 11
|
eqtri |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
| 13 |
6 12
|
eqtr3di |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
| 14 |
1 13
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |