Step |
Hyp |
Ref |
Expression |
1 |
|
iooval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
2 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
3 |
2
|
ssriv |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
4 |
1 3
|
eqsstrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ⊆ ℝ ) |
5 |
|
df-ss |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ⊆ ℝ ↔ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
7 |
|
inrab2 |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
8 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
9 |
|
sseqin2 |
⊢ ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ ) |
10 |
8 9
|
mpbi |
⊢ ( ℝ* ∩ ℝ ) = ℝ |
11 |
10
|
rabeqi |
⊢ { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
12 |
7 11
|
eqtri |
⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } |
13 |
6 12
|
eqtr3di |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |
14 |
1 13
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) |