Metamath Proof Explorer


Theorem iooval2

Description: Value of the open interval function. (Contributed by NM, 6-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooval2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )

Proof

Step Hyp Ref Expression
1 iooval ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
2 elioore ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ )
3 2 ssriv ( 𝐴 (,) 𝐵 ) ⊆ ℝ
4 1 3 eqsstrrdi ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ⊆ ℝ )
5 df-ss ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ⊆ ℝ ↔ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
6 4 5 sylib ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
7 inrab2 ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) }
8 ressxr ℝ ⊆ ℝ*
9 sseqin2 ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ )
10 8 9 mpbi ( ℝ* ∩ ℝ ) = ℝ
11 10 rabeqi { 𝑥 ∈ ( ℝ* ∩ ℝ ) ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) }
12 7 11 eqtri ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } ∩ ℝ ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) }
13 6 12 eqtr3di ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → { 𝑥 ∈ ℝ* ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )
14 1 13 eqtrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥𝑥 < 𝐵 ) } )