| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 2 |  | mblvol | ⊢ ( ( 𝐴 (,) 𝐵 )  ∈  dom  vol  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 3 | 1 2 | mp1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 4 |  | ltle | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  <  𝐴  →  𝐵  ≤  𝐴 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  <  𝐴  →  𝐵  ≤  𝐴 ) ) | 
						
							| 6 | 5 | imdistani | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  ≤  𝐴 ) ) | 
						
							| 7 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 8 |  | rexr | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* ) | 
						
							| 9 |  | ioo0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 (,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴 (,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 11 | 10 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  ≤  𝐴 )  →  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 12 |  | fveq2 | ⊢ ( ( 𝐴 (,) 𝐵 )  =  ∅  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  =  ( vol* ‘ ∅ ) ) | 
						
							| 13 |  | ovol0 | ⊢ ( vol* ‘ ∅ )  =  0 | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( ( 𝐴 (,) 𝐵 )  =  ∅  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  =  0 ) | 
						
							| 15 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 16 | 14 15 | eqeltrdi | ⊢ ( ( 𝐴 (,) 𝐵 )  =  ∅  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 17 | 6 11 16 | 3syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 18 |  | ovolioo | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 19 | 18 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 20 |  | resubcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 23 | 19 22 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 25 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 26 | 17 23 24 25 | ltlecasei | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol* ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 27 | 3 26 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) |