Metamath Proof Explorer


Theorem iordsmo

Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011)

Ref Expression
Hypothesis iordsmo.1 Ord 𝐴
Assertion iordsmo Smo ( I ↾ 𝐴 )

Proof

Step Hyp Ref Expression
1 iordsmo.1 Ord 𝐴
2 fnresi ( I ↾ 𝐴 ) Fn 𝐴
3 rnresi ran ( I ↾ 𝐴 ) = 𝐴
4 ordsson ( Ord 𝐴𝐴 ⊆ On )
5 1 4 ax-mp 𝐴 ⊆ On
6 3 5 eqsstri ran ( I ↾ 𝐴 ) ⊆ On
7 df-f ( ( I ↾ 𝐴 ) : 𝐴 ⟶ On ↔ ( ( I ↾ 𝐴 ) Fn 𝐴 ∧ ran ( I ↾ 𝐴 ) ⊆ On ) )
8 2 6 7 mpbir2an ( I ↾ 𝐴 ) : 𝐴 ⟶ On
9 fvresi ( 𝑥𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 )
10 9 adantr ( ( 𝑥𝐴𝑦𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 )
11 fvresi ( 𝑦𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 )
12 11 adantl ( ( 𝑥𝐴𝑦𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 )
13 10 12 eleq12d ( ( 𝑥𝐴𝑦𝐴 ) → ( ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ↔ 𝑥𝑦 ) )
14 13 biimprd ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥𝑦 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) )
15 dmresi dom ( I ↾ 𝐴 ) = 𝐴
16 8 1 14 15 issmo Smo ( I ↾ 𝐴 )