| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iordsmo.1 |
⊢ Ord 𝐴 |
| 2 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
| 3 |
|
rnresi |
⊢ ran ( I ↾ 𝐴 ) = 𝐴 |
| 4 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
| 5 |
1 4
|
ax-mp |
⊢ 𝐴 ⊆ On |
| 6 |
3 5
|
eqsstri |
⊢ ran ( I ↾ 𝐴 ) ⊆ On |
| 7 |
|
df-f |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 ⟶ On ↔ ( ( I ↾ 𝐴 ) Fn 𝐴 ∧ ran ( I ↾ 𝐴 ) ⊆ On ) ) |
| 8 |
2 6 7
|
mpbir2an |
⊢ ( I ↾ 𝐴 ) : 𝐴 ⟶ On |
| 9 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 11 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
| 13 |
10 12
|
eleq12d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ↔ 𝑥 ∈ 𝑦 ) ) |
| 14 |
13
|
biimprd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ∈ ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 15 |
|
dmresi |
⊢ dom ( I ↾ 𝐴 ) = 𝐴 |
| 16 |
8 1 14 15
|
issmo |
⊢ Smo ( I ↾ 𝐴 ) |