Step |
Hyp |
Ref |
Expression |
1 |
|
iorlid.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
iorlid.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
1 2
|
idrval |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑈 = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
4 |
1
|
exidu1 |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
5 |
|
riotacl |
⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ∈ 𝑋 ) |
6 |
4 5
|
syl |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ∈ 𝑋 ) |
7 |
3 6
|
eqeltrd |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑈 ∈ 𝑋 ) |