Step |
Hyp |
Ref |
Expression |
1 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
2 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
3 |
|
iotaval |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 ) |
4 |
3
|
eqeq2d |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝑥 = ( ℩ 𝑥 𝜑 ) ↔ 𝑥 = 𝑧 ) ) |
5 |
2 4
|
bitr4d |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ 𝑥 = ( ℩ 𝑥 𝜑 ) ) ) |
6 |
|
eqcom |
⊢ ( 𝑥 = ( ℩ 𝑥 𝜑 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) |
7 |
5 6
|
bitrdi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |
8 |
7
|
exlimiv |
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |
9 |
1 8
|
sylbi |
⊢ ( ∃! 𝑥 𝜑 → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) |