| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iota2.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
elex |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → 𝐴 ∈ V ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → ∃! 𝑥 𝜑 ) |
| 5 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ V |
| 7 |
|
nfeu1 |
⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 |
| 8 |
6 7
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) |
| 9 |
|
nfvd |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → Ⅎ 𝑥 𝜓 ) |
| 10 |
|
nfcvd |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → Ⅎ 𝑥 𝐴 ) |
| 11 |
3 4 5 8 9 10
|
iota2df |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |
| 12 |
2 11
|
sylan |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |