Step |
Hyp |
Ref |
Expression |
1 |
|
iota2df.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
2 |
|
iota2df.2 |
⊢ ( 𝜑 → ∃! 𝑥 𝜓 ) |
3 |
|
iota2df.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
iota2df.4 |
⊢ Ⅎ 𝑥 𝜑 |
5 |
|
iota2df.5 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
6 |
|
iota2df.6 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
8 |
7
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( ( ℩ 𝑥 𝜓 ) = 𝑥 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |
9 |
3 8
|
bibi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( ( 𝜓 ↔ ( ℩ 𝑥 𝜓 ) = 𝑥 ) ↔ ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) ) |
10 |
|
iota1 |
⊢ ( ∃! 𝑥 𝜓 → ( 𝜓 ↔ ( ℩ 𝑥 𝜓 ) = 𝑥 ) ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ( 𝜓 ↔ ( ℩ 𝑥 𝜓 ) = 𝑥 ) ) |
12 |
|
nfiota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 𝜓 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑥 𝜓 ) ) |
14 |
13 6
|
nfeqd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑥 𝜓 ) = 𝐵 ) |
15 |
5 14
|
nfbid |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |
16 |
1 9 11 4 6 15
|
vtocldf |
⊢ ( 𝜑 → ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |