| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
| 2 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝑥 = 𝑧 → 𝜑 ) ) |
| 3 |
2
|
alimi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) |
| 4 |
|
sb6 |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) |
| 5 |
3 4
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 6 |
|
iotaval |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 ) |
| 7 |
6
|
eqcomd |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → 𝑧 = ( ℩ 𝑥 𝜑 ) ) |
| 8 |
|
dfsbcq2 |
⊢ ( 𝑧 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) |
| 10 |
5 9
|
mpbid |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |
| 11 |
10
|
exlimiv |
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |
| 12 |
1 11
|
sylbi |
⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |