| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iota4 | ⊢ ( ∃! 𝑥 ( 𝜑  ∧  𝜓 )  →  [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( 𝜑  ∧  𝜓 ) ) | 
						
							| 2 |  | iotaex | ⊢ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  ∈  V | 
						
							| 3 |  | simpl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜑 ) | 
						
							| 4 | 3 | sbcth | ⊢ ( ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  ∈  V  →  [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( ( 𝜑  ∧  𝜓 )  →  𝜑 ) ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( ( 𝜑  ∧  𝜓 )  →  𝜑 ) | 
						
							| 6 |  | sbcimg | ⊢ ( ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  ∈  V  →  ( [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( ( 𝜑  ∧  𝜓 )  →  𝜑 )  ↔  ( [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( 𝜑  ∧  𝜓 )  →  [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 7 | 2 6 | ax-mp | ⊢ ( [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( ( 𝜑  ∧  𝜓 )  →  𝜑 )  ↔  ( [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( 𝜑  ∧  𝜓 )  →  [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 | 5 7 | mpbi | ⊢ ( [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] ( 𝜑  ∧  𝜓 )  →  [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] 𝜑 ) | 
						
							| 9 | 1 8 | syl | ⊢ ( ∃! 𝑥 ( 𝜑  ∧  𝜓 )  →  [ ( ℩ 𝑥 ( 𝜑  ∧  𝜓 ) )  /  𝑥 ] 𝜑 ) |