Step |
Hyp |
Ref |
Expression |
1 |
|
iota5.1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝜓 ↔ 𝑥 = 𝐴 ) ) |
2 |
1
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) ) |
3 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
4 |
3
|
bibi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜓 ↔ 𝑥 = 𝐴 ) ) ) |
5 |
4
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) ) ) |
6 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( ( ℩ 𝑥 𝜓 ) = 𝑦 ↔ ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜓 ) = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) ) |
8 |
|
iotaval |
⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜓 ) = 𝑦 ) |
9 |
7 8
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝐴 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) ) |
11 |
2 10
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ℩ 𝑥 𝜓 ) = 𝐴 ) |