Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotabi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜓 } ) | |
| 2 | 1 | eqeq1d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( { 𝑥 ∣ 𝜑 } = { 𝑧 } ↔ { 𝑥 ∣ 𝜓 } = { 𝑧 } ) ) |
| 3 | 2 | abbidv | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → { 𝑧 ∣ { 𝑥 ∣ 𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑥 ∣ 𝜓 } = { 𝑧 } } ) |
| 4 | 3 | unieqd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ∪ { 𝑧 ∣ { 𝑥 ∣ 𝜑 } = { 𝑧 } } = ∪ { 𝑧 ∣ { 𝑥 ∣ 𝜓 } = { 𝑧 } } ) |
| 5 | df-iota | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑧 ∣ { 𝑥 ∣ 𝜑 } = { 𝑧 } } | |
| 6 | df-iota | ⊢ ( ℩ 𝑥 𝜓 ) = ∪ { 𝑧 ∣ { 𝑥 ∣ 𝜓 } = { 𝑧 } } | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 𝜓 ) ) |