Metamath Proof Explorer


Theorem iotabi

Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011)

Ref Expression
Assertion iotabi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 abbi1 ( ∀ 𝑥 ( 𝜑𝜓 ) → { 𝑥𝜑 } = { 𝑥𝜓 } )
2 1 eqeq1d ( ∀ 𝑥 ( 𝜑𝜓 ) → ( { 𝑥𝜑 } = { 𝑧 } ↔ { 𝑥𝜓 } = { 𝑧 } ) )
3 2 abbidv ( ∀ 𝑥 ( 𝜑𝜓 ) → { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑥𝜓 } = { 𝑧 } } )
4 3 unieqd ( ∀ 𝑥 ( 𝜑𝜓 ) → { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑥𝜓 } = { 𝑧 } } )
5 df-iota ( ℩ 𝑥 𝜑 ) = { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } }
6 df-iota ( ℩ 𝑥 𝜓 ) = { 𝑧 ∣ { 𝑥𝜓 } = { 𝑧 } }
7 4 5 6 3eqtr4g ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 𝜓 ) )