Metamath Proof Explorer


Theorem iotacl

Description: Membership law for descriptions.

This can be useful for expanding an unbounded iota-based definition (see df-iota ). If you have a bounded iota-based definition, riotacl2 may be useful.

(Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Assertion iotacl ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 iota4 ( ∃! 𝑥 𝜑[ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 )
2 df-sbc ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ↔ ( ℩ 𝑥 𝜑 ) ∈ { 𝑥𝜑 } )
3 1 2 sylib ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ { 𝑥𝜑 } )