Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iotaex | ⊢ ( ℩ 𝑥 𝜑 ) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 ) | |
2 | 1 | eqcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → 𝑧 = ( ℩ 𝑥 𝜑 ) ) |
3 | 2 | eximi | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∃ 𝑧 𝑧 = ( ℩ 𝑥 𝜑 ) ) |
4 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
5 | isset | ⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V ↔ ∃ 𝑧 𝑧 = ( ℩ 𝑥 𝜑 ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |
7 | iotanul | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
8 | 0ex | ⊢ ∅ ∈ V | |
9 | 7 8 | eqeltrdi | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |
10 | 6 9 | pm2.61i | ⊢ ( ℩ 𝑥 𝜑 ) ∈ V |