Description: The iota class exists. This theorem does not require ax-nul for its proof. (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iotaexeu | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
2 | 1 | eqcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
3 | 2 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
4 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
5 | isset | ⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V ↔ ∃ 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |