Metamath Proof Explorer


Theorem iotaint

Description: Equivalence between two different forms of iota . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion iotaint ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 iotauni ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )
2 uniintab ( ∃! 𝑥 𝜑 { 𝑥𝜑 } = { 𝑥𝜑 } )
3 2 biimpi ( ∃! 𝑥 𝜑 { 𝑥𝜑 } = { 𝑥𝜑 } )
4 1 3 eqtrd ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )