Step |
Hyp |
Ref |
Expression |
1 |
|
iotan0.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
pm13.18 |
⊢ ( ( 𝐴 = ( ℩ 𝑥 𝜑 ) ∧ 𝐴 ≠ ∅ ) → ( ℩ 𝑥 𝜑 ) ≠ ∅ ) |
3 |
2
|
expcom |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → ( ℩ 𝑥 𝜑 ) ≠ ∅ ) ) |
4 |
|
iotanul |
⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) |
5 |
4
|
necon1ai |
⊢ ( ( ℩ 𝑥 𝜑 ) ≠ ∅ → ∃! 𝑥 𝜑 ) |
6 |
3 5
|
syl6 |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → ∃! 𝑥 𝜑 ) ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≠ ∅ → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → ∃! 𝑥 𝜑 ) ) ) |
8 |
7
|
3imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → ∃! 𝑥 𝜑 ) |
9 |
|
eqcom |
⊢ ( 𝐴 = ( ℩ 𝑥 𝜑 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) |
10 |
1
|
iota2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |
11 |
10
|
biimprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃! 𝑥 𝜑 ) → ( ( ℩ 𝑥 𝜑 ) = 𝐴 → 𝜓 ) ) |
12 |
9 11
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃! 𝑥 𝜑 ) → ( 𝐴 = ( ℩ 𝑥 𝜑 ) → 𝜓 ) ) |
13 |
12
|
impancom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → ( ∃! 𝑥 𝜑 → 𝜓 ) ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → ( ∃! 𝑥 𝜑 → 𝜓 ) ) |
15 |
8 14
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ( ℩ 𝑥 𝜑 ) ) → 𝜓 ) |