Step |
Hyp |
Ref |
Expression |
1 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
2 |
|
dfiota2 |
⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } |
3 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
4 |
|
dfnul2 |
⊢ ∅ = { 𝑧 ∣ ¬ 𝑧 = 𝑧 } |
5 |
|
equid |
⊢ 𝑧 = 𝑧 |
6 |
5
|
tbt |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑧 ) ) |
7 |
6
|
biimpi |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑧 ) ) |
8 |
7
|
con1bid |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ¬ 𝑧 = 𝑧 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
9 |
8
|
alimi |
⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑧 ( ¬ 𝑧 = 𝑧 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
10 |
|
abbi1 |
⊢ ( ∀ 𝑧 ( ¬ 𝑧 = 𝑧 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) → { 𝑧 ∣ ¬ 𝑧 = 𝑧 } = { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } ) |
11 |
9 10
|
syl |
⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → { 𝑧 ∣ ¬ 𝑧 = 𝑧 } = { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } ) |
12 |
4 11
|
eqtr2id |
⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∅ ) |
13 |
3 12
|
sylbir |
⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∅ ) |
14 |
13
|
unieqd |
⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∪ ∅ ) |
15 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
16 |
14 15
|
eqtrdi |
⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∅ ) |
17 |
2 16
|
eqtrid |
⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = ∅ ) |
18 |
1 17
|
sylnbi |
⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) |