| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sbc5 | 
							⊢ ( [ ( ℩ 𝑥 𝜑 )  /  𝑦 ] 𝜓  ↔  ∃ 𝑦 ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							iotaexeu | 
							⊢ ( ∃! 𝑥 𝜑  →  ( ℩ 𝑥 𝜑 )  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							eueq | 
							⊢ ( ( ℩ 𝑥 𝜑 )  ∈  V  ↔  ∃! 𝑦 𝑦  =  ( ℩ 𝑥 𝜑 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylib | 
							⊢ ( ∃! 𝑥 𝜑  →  ∃! 𝑦 𝑦  =  ( ℩ 𝑥 𝜑 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eu6 | 
							⊢ ( ∃! 𝑥 𝜑  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							iotaval | 
							⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( ℩ 𝑥 𝜑 )  =  𝑦 )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqcomd | 
							⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  𝑦  =  ( ℩ 𝑥 𝜑 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ancri | 
							⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							eximi | 
							⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ∃ 𝑦 ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							sylbi | 
							⊢ ( ∃! 𝑥 𝜑  →  ∃ 𝑦 ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eupick | 
							⊢ ( ( ∃! 𝑦 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  ∃ 𝑦 ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  →  ( 𝑦  =  ( ℩ 𝑥 𝜑 )  →  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  | 
						
						
							| 12 | 
							
								4 10 11
							 | 
							syl2anc | 
							⊢ ( ∃! 𝑥 𝜑  →  ( 𝑦  =  ( ℩ 𝑥 𝜑 )  →  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  | 
						
						
							| 13 | 
							
								12 7
							 | 
							impbid1 | 
							⊢ ( ∃! 𝑥 𝜑  →  ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ↔  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							anbi1d | 
							⊢ ( ∃! 𝑥 𝜑  →  ( ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  𝜓 )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝜓 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							exbidv | 
							⊢ ( ∃! 𝑥 𝜑  →  ( ∃ 𝑦 ( 𝑦  =  ( ℩ 𝑥 𝜑 )  ∧  𝜓 )  ↔  ∃ 𝑦 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝜓 ) ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							bitrid | 
							⊢ ( ∃! 𝑥 𝜑  →  ( [ ( ℩ 𝑥 𝜑 )  /  𝑦 ] 𝜓  ↔  ∃ 𝑦 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝜓 ) ) )  |