Step |
Hyp |
Ref |
Expression |
1 |
|
iotasbc |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ) ) |
2 |
|
iotasbc |
⊢ ( ∃! 𝑥 𝜓 → ( [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
3 |
2
|
anbi2d |
⊢ ( ∃! 𝑥 𝜓 → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) ) |
4 |
|
3anass |
⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
6 |
|
19.42v |
⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
7 |
5 6
|
bitr2i |
⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) |
8 |
3 7
|
bitrdi |
⊢ ( ∃! 𝑥 𝜓 → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
9 |
8
|
exbidv |
⊢ ( ∃! 𝑥 𝜓 → ( ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ) ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |
10 |
1 9
|
sylan9bb |
⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃! 𝑥 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] [ ( ℩ 𝑥 𝜓 ) / 𝑧 ] 𝜒 ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ∧ 𝜒 ) ) ) |