| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iotasbc | 
							⊢ ( ∃! 𝑥 𝜑  →  ( [ ( ℩ 𝑥 𝜑 )  /  𝑦 ] [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒  ↔  ∃ 𝑦 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							iotasbc | 
							⊢ ( ∃! 𝑥 𝜓  →  ( [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒  ↔  ∃ 𝑧 ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi2d | 
							⊢ ( ∃! 𝑥 𝜓  →  ( ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒 )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∃ 𝑧 ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							3anass | 
							⊢ ( ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							exbii | 
							⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 )  ↔  ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							19.42v | 
							⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∃ 𝑧 ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitr2i | 
							⊢ ( ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∃ 𝑧 ( ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) )  ↔  ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							bitrdi | 
							⊢ ( ∃! 𝑥 𝜓  →  ( ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒 )  ↔  ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							exbidv | 
							⊢ ( ∃! 𝑥 𝜓  →  ( ∃ 𝑦 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒 )  ↔  ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							sylan9bb | 
							⊢ ( ( ∃! 𝑥 𝜑  ∧  ∃! 𝑥 𝜓 )  →  ( [ ( ℩ 𝑥 𝜑 )  /  𝑦 ] [ ( ℩ 𝑥 𝜓 )  /  𝑧 ] 𝜒  ↔  ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝜓  ↔  𝑥  =  𝑧 )  ∧  𝜒 ) ) )  |