Metamath Proof Explorer


Theorem iotasbcq

Description: Theorem *14.272 in WhiteheadRussell p. 193. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotasbcq ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜒[ ( ℩ 𝑥 𝜓 ) / 𝑦 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 iotabi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 𝜓 ) )
2 1 sbceq1d ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜒[ ( ℩ 𝑥 𝜓 ) / 𝑦 ] 𝜒 ) )